Skip to main content
Log in

Development of lithium-free P2-type high-sodium content cathode materials with enhanced cycle and air stability for sodium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of partial substitution of Mg for Ni on a high-sodium and lithium-free layered P2-type Na45/54Mg6/54Ni12/54Mn34/54O2 cathode with high initial Coulombic efficiency and excellent cyclic stability has been investigated in this study. Based on the crystal structural analysis, the Mg doping can retain the P2 structure up to 4.3 V, thus restraining the detrimental phase transformation of P2–O2 during the Na-ion intercalation/deintercalation process. Therefore, the obtained Mg-doped P2-type cathode exhibits a reversible specific capacity of 109 mAh·g−1 at 0.1C between 2.0 and 4.3 V and a retention rate of 81.5% after 200 cycles at 1C. In addition, the full cell consisting of Mg-doped P2-type cathode and hard carbon anode shows a capacity retention rate of 85.6% after 100 cycles. This study provides new insight into the development of durable cathode materials for sodium-ion batteries.

Graphical abstract

摘要

本研究探讨了部分镁替代镍对高钠无锂层状P2型Na45/54Mg6/54Ni12/54Mn34/54O2正极的影响, 该正极具有较高的初始库仑效率和良好的循环稳定性。根据晶体结构分析, 掺入的镁可以在4.3V的电压下保持P2结构, 从而抑制了Na离子脱嵌过程中P2-O2的有害相变。因此, 所获得的掺镁P2型正极在0.1C下, 2.0–4.3 V区间表现出109 mAh·g−1的可逆比容量, 并且在1C下循环200次后保持率为81.5%。此外, 由掺镁P2型正极和硬碳负极组成的全电池在循环100次后展示出85.6%的容量保持率。这项研究为钠离子电池耐用正极材料的开发提供了新的见解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du KD, Meng YF, Zhao XX, Wang XT, Luo XX, Zhang W, Wu XL. A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery. Sci China Mater. 2021;65(3):637. https://doi.org/10.1007/s40843-021-1772-6.

    Article  CAS  Google Scholar 

  2. Sun YY, Li SQ, Wang CR, Qian YX, Zheng SY, Yuan T. Research progress of layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

    Article  CAS  Google Scholar 

  3. Lv WJ, Huang Z, Yin YX, Yao HR, Zhu HL, Guo YG. Strategies to build high-rate cathode materials for Na-Ion batteries. ChemNanoMat. 2019;5(10):1253. https://doi.org/10.1002/cnma.201900254.

    Article  CAS  Google Scholar 

  4. Li WB, Wu K, Feng H, Wang N, Zhang JH, Wang JJ, Li XF. Atomic layer deposition of ultrafine Pd nanoparticles for enhancing the rate capability of LiNi0.8Co0.1Mn0.1O2 cathode. Tungsten. 2022;4(4):346. https://doi.org/10.1007/s42864-022-00178-x.

    Article  CAS  Google Scholar 

  5. Mao Q, Gao R, Li Q, Ning D, Zhou D, Schuck G, Schumacher G, Hao Y, Liu X. O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {0 1 0} facets as high performance cathode materials for sodium-ion batteries. Chem Eng J. 2020;382:122978. https://doi.org/10.1016/j.cej.2019.122978.

  6. Geng KQ, Yang MQ, Meng JX, Zhou LF, Wang YQ, Sydorov D, Zhang Q, Zhong SW, Ma QX. Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes. Tungsten. 2022;4(4):323. https://doi.org/10.1007/s42864-022-00173-2.

  7. Huang ZX, Zhang XL, Zhao XX, Heng YL, Wang T, Geng H, Wu XL. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Sci China Mater. 2022;66(1):79. https://doi.org/10.1007/s40843-022-2157-8.

  8. Qin M, Ren W, Jiang R, Li Q, Yao X, Wang S, You Y, Mai L. Highly crystallized prussian blue with enhanced kinetics for highly efficient sodium storage. ACS Appl Mater Interfaces. 2021;13(3):3999. https://doi.org/10.1021/acsami.0c20067.

    Article  CAS  Google Scholar 

  9. Zhu Y, Zhang Z, Bao J, Zeng S, Nie W, Chen P, Zhou Y, Xu Y. Multi-metal doped high capacity and stable Prussian blue analogue for sodium ion batteries. Int J Energy Res. 2020;44(11):9205. https://doi.org/10.1002/er.5576.

    Article  CAS  Google Scholar 

  10. Chou FY, Tang JC, Lee HY, Lee JC, Ratchahat S, Chen TH, Kaveevivitchai W. Performance optimization of naphthalene-diimide-based porous organic polymer cathode for sodium-ion batteries. ACS Appl Energy Mater. 2020;3(11):11300. https://doi.org/10.1021/acsaem.0c02237.

    Article  CAS  Google Scholar 

  11. Wang YQ, Lan HH, Hou Q, Zeng RH, Gao JW. Progress in Application of Anthraquinone Organic Electrode Materials in New Secondary Batteries. Chin J Rare Met. 2022;46(2):238. https://doi.org/10.13373/j.cnki.cjrm.XY20060042.

    Article  CAS  Google Scholar 

  12. Liu C, Zhang ZX, Tan R, Deng JW, Li QH, Duan XC. Design of cross-welded Na3V2(PO4)3/C nanofibrous mats and their application in sodium-ion batteries. Rare Met. 2021;41(3):806. https://doi.org/10.1007/s12598-021-01825-x.

    Article  CAS  Google Scholar 

  13. Wang D, Cai P, Zou GQ, Hou HS, Ji XB, Tian Y, Long Z. Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Met. 2021;41(1):115. https://doi.org/10.1007/s12598-021-01743-y.

    Article  CAS  Google Scholar 

  14. Zhang KY, Gu ZY, Ang EH, Guo JZ, Wang XT, Wang Y, Wu XL. Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater Today. 2022;54:189. https://doi.org/10.1016/j.mattod.2022.02.013.

    Article  CAS  Google Scholar 

  15. Delmas C, Fouassier C, Hagemuller P. Structural classification and properties of the layered oxides. Physica B+C, 1980(99):81. https://doi.org/10.1016/0378-4363(80)90214-4

  16. Jin T, Wang PF, Wang QC, Zhu K, Deng T, Zhang J, Zhang W, Yang XQ, Jiao L, Wang C. Realizing complete solid-Solution reaction in high sodium content P2-type cathode for high-Performance sodium-ion batteries. Angew Chem Int Ed Engl. 2020;59(34):14511. https://doi.org/10.1002/anie.202003972.

    Article  CAS  Google Scholar 

  17. Park J K, Park G G, Kwak H H, Hong S T, Lee J W. Enhanced rate capability and cycle performance of titanium-substituted P2-type Na0.67Fe0.5Mn0.5O2 as a cathode for sodium-Ion batteries. ACS Omega. 2018; 3(1):361. https://doi.org/10.1021/acsomega.7b01481

  18. Qin M-l, Yin C-y, Xu W, Liu Y, Wen J-h, Shen B, Wang W-g, Liu W-m. Facile synthesis of high capacity P2-type Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteries. Trans Nonferrous Metals Soc China. 2021;31(7):2074. https://doi.org/10.1016/s1003-6326(21)65639-x.

  19. Pang WK, Kalluri S, Peterson VK, Sharma N, Kimpton J, Johannessen B, Liu HK, Dou SX, Guo Z. Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries. Chem Mater. 2015;27(8):3150. https://doi.org/10.1021/acs.chemmater.5b00943.

    Article  CAS  Google Scholar 

  20. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater. 2012;11(6):512. https://doi.org/10.1038/nmat3309.

    Article  CAS  Google Scholar 

  21. Zarrabeitia M, Nobili F, Lakuntza O, Carrasco J, Rojo T, Casas-Cabanas M, Muñoz-Márquez MÁ. Role of the voltage window on the capacity retention of P2-Na2/3[Fe1/2Mn1/2]O2 cathode material for rechargeable sodium-ion batteries. Commun Chem. 2022;5(1):1. https://doi.org/10.1038/s42004-022-00628-0.

    Article  CAS  Google Scholar 

  22. Jiao J, Wu K, Li N, Zhao E, Yin W, Hu Z, Wang F, Zhao J, Xiao X. Tuning anionic redox activity to boost high-performance sodium-storage in low-cost Na0.67Fe0.5Mn0.5O2 cathode. J Energy Chem. 2022;73: 214. https://doi.org/10.1016/j.jechem.2022.04.042.

  23. Lee DH, Xu J, Meng YS. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys. 2013;15(9):3304. https://doi.org/10.1039/c2cp44467d.

    Article  CAS  Google Scholar 

  24. Yoshida H, Yabuuchi N, Kubota K, Ikeuchi I, Garsuch A, Schulz-Dobrick M, Komaba S. P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun (Camb). 2014;50(28):3677. https://doi.org/10.1039/c3cc49856e.

    Article  CAS  Google Scholar 

  25. Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L, Guo Y G. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci Adv. 2018;4(3):eaar6018. https://doi.org/10.1126/sciadv.aar6018.

  26. Wang P F, You Y, Yin Y X, Wang Y S, Wan L J, Gu L, Guo Y G. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed Engl. 2016;55(26):7445. https://doi.org/10.1002/anie.201602202

  27. Peng B, Sun Z, Zhao L, Li J, Zhang G. Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V. Energy Storage Mater. 2021;35: 620. https://doi.org/10.1016/j.ensm.2020.11.037.

  28. Wu X, Xu G-L, Zhong G, Gong Z, McDonald MJ, Zheng S, Fu R, Chen Z, Amine K, Yang Y. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium-ion batteries. ACS Appl Mater Interfaces. 2016;8(34):22227. https://doi.org/10.1021/acsami.6b06701.

    Article  CAS  Google Scholar 

  29. Chen S, Han E, Xu H, Zhu L, Liu B, Zhang G, Lu M. P2-type Na0.67Ni0.33−x CuxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Ionics, 2017, 23(11): 3057. https://doi.org/10.1007/s11581-017-2122-x.

  30. Li Z-Y, Ma X, Guo H, He L, Li Y, Wei G, Sun K, Chen D. Complementary effect of Ti and Ni incorporation in improving the electrochemical performance of a layered sodium manganese oxide cathode for sodium-ion batteries. ACS Appl Energy Mater. 2021;4(6):5687. https://doi.org/10.1021/acsaem.1c00527.

    Article  CAS  Google Scholar 

  31. Pei Q, Lu M, Liu Z, Li D, Rao X, Liu X, Zhong S. Improving the Na0.67Ni0.33Mn0.67O2 cathode material for high-voltage cyclability via Ti/Cu codoping for sodium-ion batteries. ACS Appl Energy Mater. 2022;5(2):1953. https://doi.org/10.1021/acsaem.1c03466.

  32. Xie Z-Y, Xing X, Yu L, Chang Y-X, Yin Y-X, Xu L, Yan M, Xu S. Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries. Appl Phys Lett. 2022;121(20):203903. https://doi.org/10.1063/5.0121824.

  33. Luo R, Zheng J, Zhou Z, Li J, Li Y, He Z. Study of synergistic effects of Cu and Fe on P2-type Na(0.67)MnO(2) for high performance Na-Ion batteries. ACS Appl Mater Interfaces. 2022;14(42):47863. https://doi.org/10.1021/acsami.2c12894.

  34. Kouthaman M, Kannan K, Subadevi R, Sivakumar M. Study on the effect of co-substitution of transition metals on O3-type Na-Mn-Ni-O cathode materials for promising sodium-ion batteries. J Taiwan Inst Chem Eng. 2022;140:104565. https://doi.org/10.1016/j.jtice.2022.104565.

  35. Liao J, Zhang F, Lu Y, Ren J, Wu W, Xu Z, Wu X. Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes. Chem Eng J. 2022;437:135275. https://doi.org/10.1016/j.cej.2022.135275.

  36. Guo YJ, Niu YB, Wei Z, Zhang SY, Meng Q, Li H, Yin YX, Guo YG. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-Ion battery. ACS Appl Mater Interfaces. 2021;13(2):2772. https://doi.org/10.1021/acsami.0c20870.

    Article  CAS  Google Scholar 

  37. He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium-ion batteries. Energy Storage Mater. 2019;23:233. https://doi.org/10.1016/j.ensm.2019.05.008.

    Article  Google Scholar 

  38. Niu Y B, Guo Y J, Yin Y X, Zhang S Y, Wang T, Wang P, Xin S, Guo Y G. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv Mater. 2020;32(33):e2001419. https://doi.org/10.1002/adma.202001419.

  39. Zhang R, Tang Z, Sun D, Li R, Yang W, Zhou S, Xie Z, Tang Y, Wang H. Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries. Chem Commun (Camb). 2021;57(35):4243. https://doi.org/10.1039/d1cc01292d.

    Article  CAS  Google Scholar 

  40. Liu G-Q, Li Y, Du Y-L, Wen L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2 oxide used as cathode material for sodium-ion batteries. Rare Met. 2017;36(12):977. https://doi.org/10.1007/s12598-016-0757-9.

  41. Xu J, Lee DH, Clément RJ, Yu X, Leskes M, Pell AJ, Pintacuda G, Yang X-Q, Grey CP, Meng YS. Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–yz]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-Ion batteries. Chem Mater. 2014;26(2):1260. https://doi.org/10.1021/cm403855t.

    Article  CAS  Google Scholar 

  42. Zhao C, Yao Z, Wang Q, Li H, Wang J, Liu M, Ganapathy S, Lu Y, Cabana J, Li B, Bai X, Aspuru-Guzik A, Wagemaker M, Chen L, Hu YS. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J Am Chem Soc. 2020;142(12):5742. https://doi.org/10.1021/jacs.9b13572.

    Article  CAS  Google Scholar 

  43. Shi H, Li J, Liu M, Luo A, Li L, Luo Z, Wang X. Multiple strategies toward advanced P2-type layered NaxMnO2 for low-cost sodium-ion batteries. ACS Appl Energy Mater. 2021;4(8):8183. https://doi.org/10.1021/acsaem.1c01449.

    Article  CAS  Google Scholar 

  44. Cheng Z, Zhao B, Guo YJ, Yu L, Yuan B, Hua W, Yin YX, Xu S, Xiao B, Han X, Wang PF, Guo YG. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv Energy Mater. 2022;12(14):2103461. https://doi.org/10.1002/aenm.202103461.

    Article  CAS  Google Scholar 

  45. Singh G, Tapia-Ruiz N, Lopez del Amo J M, Maitra U, Somerville J W, Armstrong A R, Martinez de Ilarduya J, Rojo T, Bruce P G. High voltage Mg-doped Na0.67Ni0.3–xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem Mater. 2016;28(14): 5087. https://doi.org/10.1021/acs.chemmater.6b01935.

  46. Wang QC, Meng JK, Yue XY, Qiu QQ, Song Y, Wu XJ, Fu ZW, Xia YY, Shadike Z, Wu J, Yang XQ, Zhou YN. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc. 2019;141(2):840. https://doi.org/10.1021/jacs.8b08638.

    Article  CAS  Google Scholar 

  47. Zhang Y, Wu M, Ma J, Wei G, Ling Y, Zhang R, Huang Y. Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: oxygen redox chemistry and oxygen release suppression. ACS Cent Sci. 2020;6(2):232. https://doi.org/10.1021/acscentsci.9b01166.

    Article  CAS  Google Scholar 

  48. Luo R, Zhang N, Wang J, Qu W, Li L, Wu F, Chen R. Insight into effects of divalent cation substitution stabilizing P2-Type layered cathode materials for sodium-ion batteries. Electrochim Acta. 2021;368:137614. https://doi.org/10.1016/j.electacta.2020.137614.

  49. Li ZY, Zhang J, Gao R, Zhang H, Hu Z, Liu X. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces. 2016;8(24):15439. https://doi.org/10.1021/acsami.6b04073.

  50. Fang Z, Zhang XL, Hou XY, Huang WL, Li LB. Submicron single-crystalline LiNi0.5Mn1.5O4 cathode with modulated Mn3+ content enabling high capacity and fast lithium-ion kinetics. Rare Met. 2022;41(7):2268. https://doi.org/10.1007/s12598-021-01942-7.

  51. Wang Y, Tang K, Li X, Yu R, Zhang X, Huang Y, Chen G, Jamil S, Cao S, Xie X, Luo Z, Wang X. Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chem Eng J. 2019;372:1066. https://doi.org/10.1016/j.cej.2019.05.010.

  52. Huang Y, Zhu Y, Nie A, Fu H, Hu Z, Sun X, Haw SC, Chen JM, Chan TS, Yu S, Sun G, Jiang G, Han J, Luo W, Huang Y. Enabling anionic redox stability of P2-Na5/6Li1/4Mn3/4O2 by Mg Substitution. Adv Mater. 2022;34:2105404. https://doi.org/10.1002/adma.202105404.

    Article  CAS  Google Scholar 

  53. Cheng C, Chen C, Chu S, Hu H, Yan T, Xia X, Feng X, Guo J, Sun D, Wu J, Guo S, Zhang L. Enhancing the reversibility of lattice oxygen redox through modulated transition metal-oxygen covalency for layered battery electrodes. Adv Mater. 2022;34:2201152. https://doi.org/10.1002/adma.202201152.

    Article  CAS  Google Scholar 

  54. Voronina N, Shin MY, Kim HJ, Yaqoob N, Guillon O, Song SH, Kim H, Lim HD, Jung HG, Kim Y, Lee HK, Lee KS, Yazawa K, Gotoh K, Kaghazchi P, Myung ST. Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries. Adv Energy Mater. 2022;12(21):2103939. https://doi.org/10.1002/aenm.202103939.

    Article  CAS  Google Scholar 

  55. Li X, Xu J, Li H, Zhu H, Guo S, Zhou H. Synergetic anion-cation redox ensures a highly stable layered cathode for sodium-ion batteries. Adv Sci (Weinh), 2022, 9(16): e2105280. https://doi.org/10.1002/advs.202105280.

  56. Tapia-Ruiz N, Soares C, Somerville J W, House R A, Billaud J, Roberts M R, Bruce P G. P2-Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved first-cycle voltage hysteresis. J Power Sources. 2021;506: 230104. https://doi.org/10.1016/j.jpowsour.2021.230104.

  57. Wen Y, Fan J, Shi C, Dai P, Hong Y, Wang R, Wu L, Zhou Z, Li J, Huang L, Sun S-G. Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-Type layered composite for sodium-ion batteries. Nano Energy. 2019;60:162. https://doi.org/10.1016/j.nanoen.2019.02.074.

    Article  CAS  Google Scholar 

  58. Linnell SF, Kim EJ, Choi Y-S, Hirsbrunner M, Imada S, Pramanik A, Cuesta AF, Miller DN, Fusco E, Bode BE, Irvine JTS, Duda LC, Scanlon DO, Armstrong AR. Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in sodium-ion batteries. J Mater Chem A. 2022;10(18):9941. https://doi.org/10.1039/d2ta01485h.

    Article  CAS  Google Scholar 

  59. Chen Y, Su G, Cheng X, Du T, Han Y, Qiang W, Huang B. Electrochemical performances of P2-Na2/3Ni1/3Mn2/3O2 doped with Li and Mg for high cycle stability. J Alloys Comp. 2021;858:157717. https://doi.org/10.1016/j.jallcom.2020.157717.

  60. Zhang L, Guan C, Xie Y, Li H, Wang A, Chang S, Zheng J, Lai Y, Zhang Z. Heteroatom-substituted P2-Na2/3Ni1/4Mg1/12Mn2/3O2 cathode with 010 exposing facets boost anionic activity and high-rate performance for Na-ion batteries. ACS Appl Mater Interfaces. 2022;14(16):18313. https://doi.org/10.1021/acsami.1c24336.

    Article  CAS  Google Scholar 

  61. Liu H, Gao X, Chen J, Gao J, Yin S, Zhang S, Yang L, Fang S, Mei Y, Xiao X, Chen L, Deng W, Li F, Zou G, Hou H, Ji X. Reversible OP4 phase in P2-Na2/3Ni1/3Mn2/3O2 sodium-ion cathode. J Power Sources. 2021;508:230324. https://doi.org/10.1016/j.jpowsour.2021.230324.

  62. Jiang K, Zhang X, Li H, Zhang X, He P, Guo S, Zhou H. Suppressed the high-voltage phase transition of P2-type oxide cathode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(16):14848. https://doi.org/10.1021/acsami.9b03326.

    Article  CAS  Google Scholar 

  63. Zhao F, Zhang XL, Hou XY, Huang WL, Li LB. Submicron single-crystalline LiNi0.5Mn1.5O4 cathode with modulated Mn3+ content enabling high capacity and fast lithium-ion kinetics. Rare Met. 2022;41(7):12. https://doi.org/10.1007/s12598-021-01942-7.

  64. Fang T, Guo S, Jiang K, Zhang X, Wang D, Feng Y, Zhang X, Wang P, He P, Zhou H. Revealing the critical role of titanium in layered manganese-based oxides toward advanced sodium-ion batteries via a combined experimental and theoretical study. Small Methods. 2018;3(4):1800183. https://doi.org/10.1002/smtd.201800183.

    Article  CAS  Google Scholar 

  65. Tang K, Huang Y, Xie X, Cao S, Liu L, Liu H, Luo Z, Wang Y, Chang B, Shu H, Wang X. Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries. Chem Eng J. 2020;399:125725. https://doi.org/10.1016/j.cej.2020.125725.

  66. Lu Z, Dahn JR. Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2. Chem Mater. 2001;13(4):1252. https://doi.org/10.1021/cm000721x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21978193) and the Natural Science Foundation of Shanxi Province (Nos. 20210302123107, 20181102005, and 20181102019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Zhang or Xiao-Chuan Duan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5005 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, JL., Wu, LR., Zhao, HJ. et al. Development of lithium-free P2-type high-sodium content cathode materials with enhanced cycle and air stability for sodium-ion batteries. Rare Met. 43, 113–123 (2024). https://doi.org/10.1007/s12598-023-02422-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02422-w

Keywords

Navigation