Skip to main content
Log in

A Simple Route to Synthesize Mixed BiPr Oxide Nanoparticles and Polyaniline Composites with Enhanced l-Cysteine Sensing Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

BiPr oxide nanoparticles were successfully synthesized via a facile surfactant-free hydrothermal route using sodium bismuthate and praseodymium nitrate, and polyaniline/BiPr oxide nanoparticles were also obtained. The products were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy. The obtained nanoparticles with a diameter of about 50–200 nm are composed of polycrystalline structures with rhombohedral Bi0.4Pr0.6O1.5, monoclinic Bi2O3 and monoclinic Pr5O9 phases. Irregular nanoscale polyaniline particles cover the surface of the BiPr oxide. A pair of quasi-reversible cyclic voltammetry (CV) peaks are located at −0.04 V and −0.67 V, respectively, at the BiPr oxide nanoparticle-modified glassy carbon electrode (GCE) in 0.1 M KCl solution with 2 mM l-cysteine. The anodic CV peak shifts positively to +0.14 V and the cathodic CV peak shifts negatively to −0.82 V using the polyaniline/BiPr oxide nanoparticle-modified GCE. The linear range and detection limit are 0.005–2 mM and 1.18 μM, 0.0005–2 mM and 0.16 μM for the GCE modified with BiPr oxide nanoparticles and polyaniline composites, respectively. Polyaniline greatly enhances the electrochemical sensing properties of the BiPr oxide nanoparticle-modified GCE.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.L.Yang, G. Li, N. Xia, P.P. Liu, Y.X. Wang, and L.B.Qu, High performance electrochemical l-cysteine sensor based on hierarchical 3D straw-bundle-like Mn-La oxides/reduced graphene oxide composite. J. Electroanal. Chem. 877, 114564 (2020).

    Article  Google Scholar 

  2. A. Kurniawan, F. Kurniawan, F. Gunawan, and S.H. Chou. Disposable electrochemical sensor based on copper-electrodeposited screenprinted gold electrode and its application in sensing l-cysteine. Electrochim. Acta. 293, 318 (2019).

    Article  CAS  Google Scholar 

  3. K. Atacan, CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for l-cysteine detection. J. Alloys Compd. 791, 391 (2019).

    Article  CAS  Google Scholar 

  4. W. Liu, J. Luo, and Y. Guo, Nanoparticle coated paper-based chemiluminescence device for the determination of l-cysteine. Talanta.120, 336 (2014).

    Article  CAS  Google Scholar 

  5. X. Liu, L. Dong, L. Wang, H. Xu, S. Gao, L. Zhong, S. Zhang, and T. Jiang, 2-Aminopurine modified DNA probe for rapid and sensitive detection of l-cysteine. Talanta. 202, 520 (2019).

    Article  CAS  Google Scholar 

  6. K. Tsuge, M. Kataoka, and Y. Seto, Determination of s-methyl-, s-propyl-, and spropenyl-lcysteine sulfoxides by gas chromatography-mass spectrometry after tertbutyldimethylsilylation. J. Agric. Food. Chem. 50, 4445 (2002).

    Article  CAS  Google Scholar 

  7. A. Forgacsova, J. Galba, J. Mojzisova, P. Mikus, J. Piestansky, and A. Kovac, Ultra-high performance hydrophilic interaction liquid chromatography–triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinylglycine and glutathione in rat plasma. J. Pharmaceut. Biomed. 164, 442 (2019).

    Article  CAS  Google Scholar 

  8. A. Petrova, R. Ishimatsu, K. Nakano, T. Imato, A. Vishnikin, L. Moskvin, and A. Bulatov, Flow-injection spectrophotometric determination of cysteine in biologically active dietary supplements. J. Anal. Chem. 71, 172 (2016).

    Article  CAS  Google Scholar 

  9. A.V. Ivanov, P.O. Bulgakova, E. D. Virus, M.P. Kruglova, V.V. Alexandrin, V.A. Gadieva, B.P. Luzyanin, N.E. Kushlinskii, A.N. Fedoseev, and A.A. Kubatiev, Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. Electrophoresis. 38, 2646 (2017).

    Article  CAS  Google Scholar 

  10. T. Matsunaga, T. Kondo, I. Shitanda, Y. Hoshi, M. Itagaki, T. Tojo, and M. Yuasa, Sensitive electrochemical detection of l-cysteine at a screen-printed diamond electrode. Carbon. 173, 395 (2021).

    Article  CAS  Google Scholar 

  11. C. Varodi, F. Pogăcean, A. Cioriță, O. Pană, C. Leoștean, B. Cozar, T. Radu, M. Coroș, R.L.Ș. Staden, and S. M. Pruneanul, Nitrogen and sulfur Co-doped graphene as efficient electrode material for l-cysteine detection. Chemosensors. 9, 146 (2021).

    Article  CAS  Google Scholar 

  12. T. Kokulnathan, R. Vishnuraj, T.J. Wang, E.A. Kumar, and B. Pullithadathil, Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: a disposable electrochemical sensor for detection of flutamide. Ecotoxicol. Environ. Saf. 207, 111276 (2021).

    Article  CAS  Google Scholar 

  13. L.Z. Pei, N. Lin, T. Wei, H.D. Liu, and H.Y. Yu, Formation of copper vanadate nanobelts and the electrochemical behaviors for the determination of ascorbic acid. J. Mater. Chem. A. 3, 2690 (2015).

    Article  CAS  Google Scholar 

  14. L.Z. Pei, F.L. Qiu, Y. Ma, F.F. Lin, C.G. Fan, X.Z. Ling, and S.B. Zhu, Graphene/zinc bismuthate nanorods composites and their electrochemical sensing performance for ascorbic acid. Fuller. Nanotub. Car. N. 27, 58 (2019).

    Article  CAS  Google Scholar 

  15. S. Abdollah and H. Rahman, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine l-cysteine nd glutathione. Talanta. 66, 967 (2005).

    Article  Google Scholar 

  16. L.Z. Pei, T. Wei, N. Lin, H. Zhang, and C.G. Fan, Bismuth tellurate nanospheres and electrochemical behaviors of l-cysteine at the nanospheres modified electrode. Russ. J. Electrochem. 54, 84 (2018).

    Article  CAS  Google Scholar 

  17. D.R. Kumar, M.L. Baynosa, and J.J. Shim, Cu2+-1,10-phenanthroline-5,6-dione electrochemically reduced graphene oxide modified electrode for the electrocatalytic determinationof l-cysteine. Sens. Actuat. B-Chem. 293, 107 (2019).

    Article  CAS  Google Scholar 

  18. L.Z. Pei, T. Wei, N. Lin, Z.Y. Cai, C.G. Fan, and Z. Yang, Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of l-cysteine. J. Electrochem. Soc. 163:H1 (2016).

    Article  CAS  Google Scholar 

  19. H.R. Zare, F. Jahangiri-Dehaghani, Z. Shekari, and A. Benvidi, Electrocatalytic simultaneous determination of ascorbic acid, uric acid and l-cysteine in real samples using quercetin silver nanoparticles–graphene nanosheets modified glassy carbon electrode. Appl. Surf. Sci. 375,169 (2016).

    Article  CAS  Google Scholar 

  20. R. María-Hormigos, M.J. Gismera, and M.T. Sevilla, Straightforward ultrasound-assisted synthesis of bismuth oxide particles with enhanced performance for electrochemical sensors development. Mater. Lett. 158, 359 (2015).

    Article  Google Scholar 

  21. L.Z. Pei, C.H. Yu, Z.Y. Xue, and Y. Zhang, A review on ternary bismuthate nanoscale materials. Recent Pat. Nanotech. 15, 142 (2021).

    Article  CAS  Google Scholar 

  22. P. Sonström, J. Birkenstock, Y. Borchert, L. Schilinsky, P. Behrend, K. Gries, K. Müller, A. Rosenauer, and M. Bäumer, Nanostructured praseodymium oxide: correlation between phase transitions and catalytic activity. ChemCatChem. 2, 694 (2010).

    Article  Google Scholar 

  23. Q.C. Zhang, W.L. Yan, L. Jiang, Y.G. Zheng, J.X. Wang , and R.K. Zhang, Synthesis of nano-praseodymium oxide for cataluminescence sensing of acetophenone in exhaled breath. Molecules. 24, 4275 (2019).

    Article  CAS  Google Scholar 

  24. K. Sato, K. Imamura, Y. Kawano, S.I. Miyahara, T. Yamamoto, S. Matsumura, and K. Nagaoka, A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Chem. Sci. 8, 674 (2017).

    Article  CAS  Google Scholar 

  25. A. Doménech, N. Montoya, and J. Alarcón, Electrochemical characterization of praseodymium centers in PrxZr1-xO2 zirconias using electrocatalysis and photoelectrocatalysis. J. Solid State Electrochem. 16, 963 (2012).

    Article  Google Scholar 

  26. S. Shrestha, F. Marken, J. Elliott, C.M.Y. Yeung, C.E. Mills, and S.C. Tsang, Electrochemical deposition of praseodymium oxide on tin-doped indium oxide as a thin sensing film. J. Electrochem. Soc. 153, C517 (2006).

    Article  CAS  Google Scholar 

  27. M. Zidan, W.T. Tan, A.H. Abdullah, Z. Zainal, and G.J. Kheng, Electrochemical oxidation of ascorbic acid mediated by Bi2O3 microparticles modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 289 (2011).

    CAS  Google Scholar 

  28. D. Xu, K. He, R.H. Yu, Y. Tong, J.P. Qi, X.J. Sun, Y.T. Yang, H.X. Xu, H.M. Yuan, and J. Ma, Microstructure and electrical properties of praseodymium oxide doped Bi2O3 based ZnO varistor films. Mater. Technol. 30, A24 (2015).

    Article  CAS  Google Scholar 

  29. B. Zhang, G.J. Liu, X. Yao, X.L. Li, B. Jin, L.J. Zhao, X.Y. Lang, Y.F. Zhu, and Q. Jiang, CoMoO3 nanoplate/reduced graphene oxide composites decorated with Ag nanoparticles for electrocatalytic water oxidation. ACS Appl. Nano Mater. 4, 5383 (2021).

    Article  CAS  Google Scholar 

  30. M. Eising, C. O’Callaghan, C.E. Cava, A. Schmidt, A.J.G. Zarbin, M.S. Ferreira, and L.S. Roman, The role of carbon nanotubes on the sensitivity of composites with polyaniline for ammonia sensors. Carbon Trends. 3,100026 (2021).

    Article  Google Scholar 

  31. F. Saadati, F. Ghahramani, H. Shayani-jam, F. Piri, and M.R. Yaftian, Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. E. 86, 213 (2018).

    Article  CAS  Google Scholar 

  32. V. Gautam, K.P. Singh, and V.L. Yadav, Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: for electrochemical sensor applications. Carbohyd. Polym. 189, 218 (2018).

    Article  CAS  Google Scholar 

  33. X.Z. Lin, B. Guo, Y.F. Qiu , P.R. Xu, and H.B. Fan, Surfactant-free hydrothermal synthesis of CePO4 microbundles assembled by aligned nanorods. Mater. Lett. 197, 49 (2017).

    Article  Google Scholar 

  34. W. Jiang, T.S. Huangfu, X. Yang, L. Bao, Y. Liu, G. Xu, and G.R. Han, Surfactant-free hydrothermal synthesis of hierarchical flower-like Bi2WO6 mesosphere nanostructures with excellent visible-light photocatalytic activity. CrystEngComm. 21, 6293 (2019).

    Article  CAS  Google Scholar 

  35. W. Zhang, L.L. Feng, H.Y. Chen, and Y.Y. Zhang, Hydrothermal synthesis of SnO2 nanorod as anode materials for lithium-ion battery. NANO. 14, 1950109 (2019)

    Article  CAS  Google Scholar 

  36. L.Z. Pei, S. Wang, Y.X. Jiang, Y. Li, Y.K. Xie, and Y.H. Guo, Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue. CrystEngComm. 15, 7815 (2013).

    Article  CAS  Google Scholar 

  37. L.Z. Pei, N. Lin, T. Wei, H.D. Liu, and H.Y. Yu, Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd. 631, 90 (2015).

    Article  CAS  Google Scholar 

  38. T. Preethi, K. Senthil, S. Ashokan, B. Sundaravel, and P. Saravanan, Structural, optical and magnetic properties of SnO2 nanoparticles synthesized via surfactant-free hydrothermal process. Mater. Today. 47, 2097 (2021).

    CAS  Google Scholar 

  39. Y.P. Luo, J.W. Chen, J. Chen, J.W. Liu, Y. Shao, X.F. Li, and D.Z. Li, Hydroxide SrSn(OH)6: a new photocatalyst for degradation of benzene and rhodamine B. Appl. Catal. B: Environ. 182, 533 (2016).

    Article  CAS  Google Scholar 

  40. J.X. Wu, Z.M. Wang, S. Li, and M.S. Ma, In situ photoemission study of a Pr2O3 thin film on GaAs(111). J. Vac. Sci. Technol. A. 22, 594 (2004)

    Article  CAS  Google Scholar 

  41. Z.T. Meng, Y.D. Huang, Y.C. Fang, X.C. Wang , Y. Guo, Z.J. Liu, M.R. Xi, W.Q. Su, and L. Wang. Facile preparation of praseodymium oxide coated peanut-like lithium nickel cobalt manganese oxide microspheres for lithium ion batteries with high voltage capabilities. J. Alloys Compd. 784, 620 (2019)

    Article  CAS  Google Scholar 

  42. M. Ramezanzadeh, G. Bahlakeh, Z. Sanaei, and B. Ramezanzadeh, Interfacial adhesion and corrosion protection properties improvement of a polyester-melamine coating by deposition of a novel green praseodymium oxide nanofilm: a comprehensive experimental and computational study. J. Ind. Eng. Chem. 74, 26 (201)

    Article  CAS  Google Scholar 

  43. J. Liao, K.D. Li, Y. Zhang, and L. Zhang, Facile synthesis of a novel ultra-low density praseodymium oxide aerogel for catalyst and adsorbent. Mater. Lett. 254, 364 (2019).

    Article  CAS  Google Scholar 

  44. V. Kannan, M. Arredondo, F. Johann, D. Hesse, C. Labrugere, M. Maglione, and I. Vrejoiu, Strain dependent microstructural modifications of BiCrO3 epitaxial thin films. Thin Solid Films. 545, 130 (2013).

    Article  CAS  Google Scholar 

  45. T. Unmüssig, A. Weltin, S. Urban, P. Daubinger, G.A. Urban, and J. Kieninger, Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures. J. Electroanal. Chem. 816, 215 (2018)

    Article  Google Scholar 

  46. R. Nyholm, A. Berndtsson, and N. Martensson, Core level binding energies for the elements Hf to Bi (Z=72-83). J. Phys. C: Solid State Phys. 13, L1091 (1980)

    Article  CAS  Google Scholar 

  47. C. Du, D.H. Li, Q.Y. He, J.M. Liu, W. Li, G.N. He, and Y.Z. Wang, Design and simple synthesis of composite Bi12TiO20/Bi4Ti3O12 with a good photocatalytic quantum efficiency and high production of photo-generated hydroxyl radicals. Phys. Chem. Chem. Phys. 18, 26530 (2016).

    Article  CAS  Google Scholar 

  48. S. Palaniappan, Chemical and electrochemical polymerization of aniline using tartaric acid. Eur. Poly. J. 37, 975 (2001)

    Article  CAS  Google Scholar 

  49. D. Boyne, N. Menegazzo, R.C. Pupillo, J. Rosenthal, and K.S. Booksh, Vacuum thermal evaporation of polyaniline doped with camphorsulfonic acid. J. Vac. Sci. Technol. A. 33, 031510 (2015)

    Article  Google Scholar 

  50. S. Adhikari and P. Banerji, Enhanced conductivity in iodine doped polyaniline thin film formed by thermal evaporation. Thin Solid Films. 518, 5421 (2010).

    Article  CAS  Google Scholar 

  51. S. Zinatloo-Ajabshir and M. Salavati-Niasari, Novel poly(ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceram. Int. 41, 567 (2015).

    Article  CAS  Google Scholar 

  52. B.M. Abu-Zied, Controlled synthesis of praseodymium oxide nanoparticles obtained by combustion route: effect of calcination temperature and fuel to oxidizer ratio. Appl. Surf. Sci. 471, 246 (2019)

    Article  CAS  Google Scholar 

  53. X.C. Dou, Y.G. Chen, and H.F. Shi, CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chem. Eng. J. 431, 134054 (2022).

    Article  CAS  Google Scholar 

  54. T.R. Das, P.K. Sharma, Sensitive and selective electrochemical detection of Cd2+ by using bimetal oxide decorated graphene oxide (Bi2O3/Fe2O3@GO) electrode. Microchem. J. 147, 1203 (2019).

    Article  CAS  Google Scholar 

  55. X. Wang, C. Yang, T. Wang, and P. Liu, Praseodymium oxide/polypyrrole nanocomposites for electrochemical energy storage. Electrochim. Acta. 58, 193 (2011).

    Article  CAS  Google Scholar 

  56. M. Popa and M. Kakihana, Praseodymium oxide formation by thermal decomposition of a praseodymium complex. Solid State Ion. 141–142, 265 (2001)

    Article  Google Scholar 

  57. M. Mostafavi, M.R. Yaftian, F. Piri, and H. Shayani-Jam, A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron. 122, 160 (2018).

    Article  CAS  Google Scholar 

  58. C.U. Seo, Y. Yoon, D.H. Kim, S.Y. Choi, W.K. Park, J.S. Yoo, B. Baek, S.B. Kwon, C.M. Yang, Y.H. Song, D.H. Yoon, W.S. Yang, and S. Kim, Fabrication of polyaniline-carbon nano composite for application in sensitive flexible acid sensor. J. Ind. Eng. Chem. 64, 97 (2018).

    Article  CAS  Google Scholar 

  59. M.M. Hasan, T. Islam, A. Imran, B. Alqahtani, S.S. Shah, W. Mahfoz, M.R. Karim, H.F. Alharbi, M.A. Aziz, and A.J.S. Ahammad, Mechanistic insights of the oxidation of bisphenol A at ultrasonication assisted polyaniline-Au nanoparticles composite for highly sensitive electrochemical sensor. Electrochim. Acta. 374, 137968 (2021).

    Article  CAS  Google Scholar 

  60. L.Z. Pei, H.D. Liu, N. Lin, Y.K. Xie, and Z.Y. Cai, Electrochemical analysis of cyanuric acid using polyaniline/CuGeO3 nanowires as electrode modified materials. Curr. Pharm. Anal. 11, 16 (2015)

    Article  CAS  Google Scholar 

  61. T. Osaka, S. Ogano, K. Naoi, and N. Oyama, Electrochemical polymerization of electroactive polyaniline in nonaqueous solution and its application in rechargeable lithium batteries. J. Electrochem. Soc. 136, 306 (1989).

    Article  CAS  Google Scholar 

  62. J.E. Park, S.G. Park, A. Koukitu, O. Hatozaki, and N. Oyama Effect of adding Pd nanoparticles to dimercaptan-polyaniline cathodes for lithium polymer battery. Synthetic Met. 140, 121 (2004).

    Article  CAS  Google Scholar 

  63. F. Cao, Y.K. Huang, F. Wang, D. Kwak, Q.C. Dong, D.H. Song, J. Zeng, and Y. Lei, A high-performance electrochemical sensor for biologically meaningful l-cysteine based on a new nanostructured l-cysteine electrocatalyst. Anal. Chim. Acta. 1019, 103 (2018).

    Article  CAS  Google Scholar 

  64. J. Zhang, W.S. Tan, Y.X. Tao, L.H. Deng, Y. Qin, and Y. Kong, A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers. Electrochem. Commun. 86, 57 (2018).

    Article  CAS  Google Scholar 

  65. G. Manibalan, G. Murugadoss, R. Thangamuthu, M.R. Kumar, R.M. Kumar, and R. Jayavel, CeO2-based heterostructure nanocomposite for electrochemical determination of l-cysteine biomolecule. Inorg. Chem. Commun. 113, 107793 (2020).

    Article  CAS  Google Scholar 

  66. M. Hussain, N. Khaliq, A.A. Khan, M. Mhan, G. Ali, and M. Maqbool, Synthesis, characterization and electrochemical analysis of TiO2 nanostructures for sensing l-cysteine and hydrogen peroxide. Physica E. 128, 114541 (2021).

    Article  CAS  Google Scholar 

  67. M. Zhou, J. Ding, L.P. Guo, and Q.K. Shang, Electrochemical behavior of l-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal. Chem. 79, 5328 (2007).

    Article  CAS  Google Scholar 

  68. P. Sharma, S. Kaur, S. Chaudhary, A. Umar, and R. Kumar, Bare and non-ionic surfactant-functionalized praseodymium oxide nanoparticles: toxicological studies. Chemosphere. 209, 1007 (2018).

    Article  CAS  Google Scholar 

  69. S. Sato, R. Takahashi, T. Sodesawa, A. Igarashi, and H. Inoue Catalytic reaction of 1,3-butanediol over rare earth oxides. Appl. Catal. A: Gen. 328, 109 (2007).

    Article  CAS  Google Scholar 

  70. Z.N. Liu, H.C. Zhang, S.F. Hou, and H.Y. Ma, Highly sensitive and selective electrochemical detection of l-cysteine using nanoporous gold. Microchim. Acta. 177, 427 (2012).

    Article  CAS  Google Scholar 

  71. S.D. Fei, J.H. Chen, S.Z. Yao, G. H. Deng, D.L. He, and Y.F. Kuang, Electrochemical behavior of l-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem. 339, 29 (2005).

    Article  CAS  Google Scholar 

  72. X.J. Wang, L.L. Zhang, L.X. Miao, M.X. Kan, L.L. Kong, and H.M. Zhang, Oxidation and detection of l-cysteine using a modified Au/Nafion/glassy carbon electrode. Sci. China Chem. 54, 521 (2011).

    Article  CAS  Google Scholar 

  73. S. Yang, G. Li, Y. Wang, G. Wang, and L. Qu, Amperometric l-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim. Acta. 183, 1351 (2016).

    Article  CAS  Google Scholar 

  74. H. Heli, M. Hajjizadeh, A. Jabbari, and A. Moosavi-movahedia fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles. Anal. Biochem. 388, 81 (2009).

    Article  CAS  Google Scholar 

  75. Y.H. Bai, J.J. Xu, H.Y. Chen, Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron. 24, 2985 (2009).

    Article  CAS  Google Scholar 

  76. C.Y. Deng, J.H. Chen, X.L. Chen, M.D. Wang, Z. Nie, and S. Z. Yao, Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim. Acta. 54, 3298 (2009).

    Article  CAS  Google Scholar 

  77. Y.P. Dong, L.Z. Pei, X.F. Chu, W.B. Zhang, Q.F. Zhang, Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochim. Acta. 55, 5135 (2010).

    Article  CAS  Google Scholar 

  78. L.Z. Pei, Z.Y. Cai, Y.Q. Pei, Y.K. Xie, C.G. Fan, and D.G. Fu, Electrochemical determination of l-Cysteine using CuGeO3/polyaniline nanowires modified electrode. Russ. J. Electrochem. 50, 458 (2014).

    Article  CAS  Google Scholar 

  79. G. Ziyatdinova, L. Grigor’eva, M. Morozov, A. Gilmutdinov, and H. Budnikov, Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes. Microchim. Acta. 165, 359 (2009).

    Article  Google Scholar 

  80. N. Spataru, B.V. Sarada, E. Papa, D.A. Tryk, and A. Fujishima, Voltammetric determination of l-cysteine at conductive diamond electrodes. Anal. Chem. 73, 514 (2001).

    Article  CAS  Google Scholar 

  81. M. Ahmad, C.F. Pan, and J. Zhu, Electrochemical determination of l-cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. J. Mater. Chem. 20, 7169 (2010).

    Article  CAS  Google Scholar 

  82. X.F. Tang, Y. Liu, H.Q. Hou, and T.Y. You, Electrochemical determination of l-tryptophan, l-tyrosine and l-cysteine using electrospun carbon nanofibers modified electrode. Talanta. 80, 2182 (2010).

    Article  CAS  Google Scholar 

  83. Z. Chen, H. Zheng, C. Lu, and Y. Zu, Oxidation of l-cysteine at a fluorosurfactant-modified gold electrode: lower overpotential and higher selectivity. Langmuir. 23, 10816 (2007).

    Article  CAS  Google Scholar 

  84. S.M. Chen, J.Y. Chen, and R. Thangamuthu, Electrochemical Preparation of brilliant-blue-modified poly(diallyldimethylammonium chloride) and nafion-coated glassy carbon electrodes and their electrocatalytic behavior towards oxygen and l-cysteine. Electroanal. 20, 1565 (2008).

    Article  CAS  Google Scholar 

  85. A. Salimi, and R. Hallaj, Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione. Talanta. 66, 967 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This work was supported by the Natural Science Foundation of Anhui Province of P. R. China (Grant No. 2008085ME172), Natural Science Foundation of Fujian Province of P. R. China (2019J01872), Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (fma2018010) and Scientific Research Climb Plan of Xiamen University of Technology (XPDKT19035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhai Pei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2422 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Cai, Z., Zhang, Y. et al. A Simple Route to Synthesize Mixed BiPr Oxide Nanoparticles and Polyaniline Composites with Enhanced l-Cysteine Sensing Properties. J. Electron. Mater. 52, 613–627 (2023). https://doi.org/10.1007/s11664-022-10033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10033-x

Keywords

Navigation