Skip to main content
Log in

Hydrothermal synthesis of iron titanate hexagonal nanoplates for electrochemical detection of nitrofurazone

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor is established using an iron titanate (FeTiO3) modified glassy carbon electrode (GCE) to detect nitrofurazone. Various microscopic and spectroscopic analysis was performed to reveal the properties of the prepared FeTiO3 hexagonal nanoplates. The FeTiO3/GCE presents enhanced electrochemical response to nitrofurazone at the peak reduction potential of − 0.471 V with a larger peak current than the bare GCE due to high electrical conductivity, enhanced specific surface area, and abundant active sites. The superior nitrofurazone detection performance includes the low limit of detection of 0.002 μM and the sensitivity of 0.551 µA µM−1 cm−2 in the linear concentration range of 0.01–162.2 μM. The reproducibility and selectivity studies of the FeTiO3/GCE show excellent results with a relative standard deviation of < 5%. The practicability of FeTiO3/GCE is confirmed by monitoring nitrofurazone in actual samples. This work demonstrates that perovskite-type FeTiO3 has great potential in real-world sample analysis, and provides a new way to develop high-performance electrochemical sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials used in this research are available on request.

References

  1. Kokulnathan T, Chen TW, Chen SM, Ahmed F, Hasan PMZ, Bilgrami AL, Kumar S (2022) A robust combination of dysprosium vanadate/halloysite nanotubes: the electrochemical system for dimetridazole detection. Mater Today Chem 24:100890. https://doi.org/10.1016/j.mtchem.2022.100890

    Article  CAS  Google Scholar 

  2. Asad M, Wang S, Wang QY, Li LK, Anwar MI, Younas A, Zang SQ (2021) Aqueous media ultra-sensitive detection of antibiotics: Via highly stable luminescent 3D Cadmium-based MOF. New J Chem 45:20887–20894. https://doi.org/10.1039/d1nj04413c

    Article  CAS  Google Scholar 

  3. Kokulnathan T, Vishnuraj R, Wang TJ, Pullithadathil B (2022) Multidimensional nanoarchitectures of TiO2/Au nanofibers with O-doped C3N4 nanosheets for electrochemical detection of nitrofurazone. Appl Surf Sci 604:154474. https://doi.org/10.1016/j.apsusc.2022.154474

    Article  CAS  Google Scholar 

  4. Zoubir J, Radaa C, Bougdour N, Idlahcen A, El Hayaoui W, Tajat N, El Mouhri W, Nadif I, Qourzal S, Tamimi M, Assabbane A, Bakas I (2022) A sensor based on silver nanoparticles synthesized on carbon graphite sheets for the electrochemical detection of nitrofurazone: Application: Tap water, commercial milk and human urine. J Indian Chem Soc 99:100590. https://doi.org/10.1016/j.jics.2022.100590

    Article  CAS  Google Scholar 

  5. Wang K, Li L, Yang L, Guo J, Wang Z, Tang H, Ma Y (2022) A water-stable zwitterionic Zn(II) coordination polymer as a luminescent sensor for the nitrofurazone antibiotic in milk. Polyhedron 226:116092. https://doi.org/10.1016/j.poly.2022.116092

    Article  CAS  Google Scholar 

  6. Ahmed SR, Anwar H, Ahmed SW, Shah MR, Ahmed A, Ali SA (2021) Green synthesis of silver nanoparticles: Antimicrobial potential and chemosensing of a mutagenic drug nitrofurazone in real samples. Meas J Int Meas Confed 180:109489. https://doi.org/10.1016/j.measurement.2021.109489

    Article  Google Scholar 

  7. Bi S, Shao D, Yuan Y, Zhao R, Li X (2022) Sensitive surface-enhanced Raman spectroscopy (SERS) determination of nitrofurazone by β-cyclodextrin-protected AuNPs/γ-Al2O3 nanoparticles. Food Chem 370. https://doi.org/10.1016/j.foodchem.2021.131059

  8. Bian W, Liu Z, Lian G, Wang L, Wang Q, Zhan J (2017) High reliable and robust ultrathin-layer gold coating porous silver substrate via galvanic-free deposition for solid phase microextraction coupled with surface enhanced Raman spectroscopy. Anal Chim Acta 994:56–64. https://doi.org/10.1016/j.aca.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed SW, Anwar H, Shama A, Siddiqui MR, Shah A, Ahmed S.A. Ali (2018) Synthesis and chemosensing of nitrofurazone using olive oil based silver nanoparticles (O-AgNPs). Sensors Actuators, B Chem. 256:429–439. https://doi.org/10.1016/j.snb.2017.10.111

    Article  CAS  Google Scholar 

  10. Liu T, He J, Lu Z, Sun M, Wu M, Wang X, Jiang Y, Zou P, Rao H, Wang Y (2022) A visual electrochemiluminescence molecularly imprinted sensor with Ag+@UiO-66-NH2 decorated CsPbBr3 perovskite based on smartphone for point-of-care detection of nitrofurazone. Chem Eng J 429:132462. https://doi.org/10.1016/j.cej.2021.132462

    Article  CAS  Google Scholar 

  11. Pearson RA, Evans C, Bendall JG (2016) Nitrofurazone quantification in milk at the European Union minimum required performance limit of 1 ng g−1: circumventing the semicarbazide problem. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 33:1324–1336. https://doi.org/10.1080/19440049.2016.1209692

  12. Wen X, Yan X, Zheng X, Kou Q, Yang L, Tang J, Chen X, Xie Y, Le T (2023) Selection and truncation of aptamers as fluorescence sensing platforms for selective and sensitive detection of nitrofurazone. Anal Chim Acta 1252:341044. https://doi.org/10.1016/j.aca.2023.341044

    Article  CAS  PubMed  Google Scholar 

  13. Kokulnathan T, Wang TJ, Ahmed F, Alshahrani T, Arshi N (2024) Synergism of holmium orthovanadate/phosphorus-doped carbon nitride nanocomposite: nonenzymatic electrochemical detection of hydrogen peroxide. Inorg Chem 63(6):3019–3027. https://doi.org/10.1021/acs.inorgchem.3c03804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santhan A, Hwa KY (2023) Facile synthesis of needle-like copper sulfide structures as an effective electrochemical sensor material for neurotransmitter detection in biological samples. Sensors 23(21):8849. https://doi.org/10.3390/s23218849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kokulnathan T, Wang TJ, Ahmed F, Alshahrani T (2023) Synthesis of 3D flower-like zinc-chromium layered double hydroxides: a functional electrode material for furaltadone Detection. Process Saf Environ Prot 176:889–897. https://doi.org/10.1016/j.psep.2023.06.044

    Article  CAS  Google Scholar 

  16. Santhan A, Hwa KY (2023) Construction of 2D niobium carbide-embedded silver/silver phosphate as sensitive disposable electrode material for epinephrine detection in biological real samples. Mater Today Chem 27:101332. https://doi.org/10.1016/j.mtchem.2022.101332

    Article  CAS  Google Scholar 

  17. Ramakrishnan S, Pradeep KR, Raghul A, Senthilkumar R, Rangarajan M, Kothurkar NK (2015) One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid. Anal Methods 7:779–786. https://doi.org/10.1039/c4ay02487g

    Article  CAS  Google Scholar 

  18. Baby JN, Sriram B, Hsu YF, Wang SF, Bartholomew R, George M (2022) Rational incorporation of strontium pyrophosphate/hexagonal boron nitride composite for trace level electrochemical sensing of dopamine. Microchem J 183:108067. https://doi.org/10.1016/j.microc.2022.108067

    Article  CAS  Google Scholar 

  19. SakthiPriya T, Chen TW, Chen SM, Kokulnathan T, Akilarasan M, Rwei SP, Yu J (2023) Hierarchical 3d snowflake-like iron diselenide: a robust electrocatalyst for furaltadone detection. Inorg Chem 62:1437–1446. https://doi.org/10.1021/acs.inorgchem.2c03512

    Article  CAS  Google Scholar 

  20. Kokulnathan T, Vishnuraj R, Wang TJ, Pullithadathil B, Rangarajan M, Ahmed F, Alshahrani T (2024) Strongly coupled design of zinc oxide-nanorods/copper tin sulfide-nanoflowers nanostructures: An electrochemical study in 4-nitrochlorobenzene detection. Chem Eng J 479:147747. https://doi.org/10.1016/j.cej.2023.147747

    Article  CAS  Google Scholar 

  21. Priya TS, Chen TW, Chen SM, Kokulnathan T, Lou BS, Al-onazi WA, Al-Mohaimeed AM, Elshikh MS, Yu J (2023) Synthesis of perovskite-type potassium niobate using deep eutectic solvents: A promising electrode material for detection of bisphenol A. Chemosphere 318:137948. https://doi.org/10.1016/j.chemosphere.2023.137948

    Article  CAS  PubMed  Google Scholar 

  22. Sherlin AV, Baby JN, Sriram B, Hsu YF, Wang SF, George M (2022) Construction of ANbO3 (A= Na, K)/f-carbon nanofiber composite: Rapid and real-time electrochemical detection of hydroxychloroquine in environmental samples. Environ Res 215. https://doi.org/10.1016/j.envres.2022.114232.

  23. Priya TS, Sasikumar R, Chen TW, Chen SM, Kim B, Kokulnathan BT (2023) Deep eutectic solvents-mediated synthesis of barium stannate/halloysite nanotubes-based nanocomposite for electrochemical detection of hazardous 4-nitroaniline. Appl Clay Sci 244:107103. https://doi.org/10.1016/j.clay.2023.107103

    Article  CAS  Google Scholar 

  24. Santhan A, Hwa KY (2022) Rational design of nanostructured copper phosphate nanoflakes supported niobium carbide for the selective electrochemical detection of melatonin. ACS Appl Nano Mater 5:18256–18269. https://doi.org/10.1021/acsanm.2c04139

    Article  CAS  Google Scholar 

  25. Thirumalraj B, Sriram B, Muthukutty B, Zheng L, Wang SF, Choe H, Kwon K (2023) Layered metal chalcogenide of SnSe nanosheets integrated with 2D-hexagonal boron nitride for accurate and low-level detection of nitrofurazone. Chem Eng J 455:140521. https://doi.org/10.1016/j.cej.2022.140521

    Article  CAS  Google Scholar 

  26. Santhan A, Hwa KY (2023) Zinc phosphate-incorporated niobium carbide as an effective electrocatalyst for ultrasensitive and selective monitoring of monoamine neurotransmitter. ACS Sustain Chem Eng 11:4329–4341. https://doi.org/10.1021/acssuschemeng.2c05428

    Article  CAS  Google Scholar 

  27. He J, Xu X, Li M, Zhou S, Zhou W (2023) Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 1251:341007. https://doi.org/10.1016/j.aca.2023.341007

    Article  CAS  PubMed  Google Scholar 

  28. Thomas J, Anitha PK, Thomas T, Thomas N (2022) BaZrO3 based non enzymatic single component single step ceramic electrochemical sensor for the picomolar detection of dopamine. Ceram Int 48:7168–7182. https://doi.org/10.1016/j.ceramint.2021.11.278

    Article  CAS  Google Scholar 

  29. Gireesh Baiju K, Murali B, Kumaresan D (2021) Ferroelectric barium titanate microspheres with superior light-scattering ability for the performance enhancements of flexible polymer dye sensitized solar cells and photodetectors. Sol Energy 224:93–101. https://doi.org/10.1016/j.solener.2021.05.063

    Article  CAS  Google Scholar 

  30. Kathirvel A, Uma Maheswari A, Batabyal SK, Sivakumar M (2021) BiFeO3-Thiourea/Carbon heterostructure based self-powered white light photodetector. Mater Lett 284:128906. https://doi.org/10.1016/j.matlet.2020.128906

    Article  CAS  Google Scholar 

  31. Murali B, Gireesh Baiju K, Krishna Prasad R, Kumaresan D (2023) Fabrication of Barium Titanate Nanowires-GNP Composite Bilayer Photoanodes for the High-Performance Dye-Sensitized Solar Cells. Appl Surf Sci 610:155316. https://doi.org/10.1016/j.apsusc.2022.155316

    Article  CAS  Google Scholar 

  32. Kuchipudi A, Nagappan S, Karmakar A, Sreedhar G, Kundu S (2022) Stabilization of Ru NPs over 3D LaCrO3Nanostructures for High-Performance HER Catalysts in Acidic Media. Inorg Chem 61:19407–19416. https://doi.org/10.1021/acs.inorgchem.2c03209

    Article  CAS  PubMed  Google Scholar 

  33. Rajaitha PM, Hajra S, Padhan AM, Panda S, Sahu M, Kim HJ (2022) An electrochemical sensor based on multiferroic NdFeO3 particles modified electrode for the detection of H2O2. J Alloys Compd 915:165402. https://doi.org/10.1016/j.jallcom.2022.165402

    Article  CAS  Google Scholar 

  34. Quasim Khan M, Alharthi FA, Ahmad K, Kim H (2022) Hydrothermal synthesis of BaTiO3 perovskite for H2O2 sensing. Chem Phys Lett 805:3–8. https://doi.org/10.1016/j.cplett.2022.139950

    Article  CAS  Google Scholar 

  35. Dong J, Dong Y, Ren N, Zhang L, Li Y, He H, Chen C (2022) Realizing High-Performance Lithium Storage by Fabricating FeTiO3 Nanoparticle-Impregnated Multichannel Carbon Nanofibers with Promoted Reaction Kinetics. ACS Appl Mater Interfaces 14:46513–46522. https://doi.org/10.1021/acsami.2c11738

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhu J, Jiang Y, An T, Huang J, Jiang M, Cao M (2022) Highly graphited carbon-coated FeTiO3 nanosheets in situ derived from MXene: an efficient bifunctional catalyst for Zn-air batteries. Dalt Trans 51:5706–5713. https://doi.org/10.1039/d2dt00114d

    Article  CAS  Google Scholar 

  37. Guo S, Wang Y, Chen L, Pan D, Guo Z, Xia S (2021) Porous TiO2–FeTiO3@Carbon nanocomposites as anode for high-performance lithium-ion batteries. J Alloys Compd 858. https://doi.org/10.1016/j.jallcom.2020.157635

  38. Li S, Wang X, Shi Z, Wang J, Ji G, Yaer X (2022) High-Performance Lithium-Ion Storage of FeTiO3 with morphology adjustment and niobium doping. Materials (Basel) 15. https://doi.org/10.3390/ma15196929

  39. Zhang X, Li T, Gong Z, Zhao H, Wang L, Wan J, Wang D, Li X, Fu W (2015) Shape controlled FeTiO3 nanostructures: Crystal facet and photocatalytic property. J Alloys Compd 653:619–623. https://doi.org/10.1016/j.jallcom.2015.09.029

    Article  CAS  Google Scholar 

  40. Zhu P, Li Y, Chen F, Luo X, Zhou Y, Qiu Q, Xie T (2023) Construction of 3D flower-like FeTiO3/MoS2 heterostructure photocatalyst for degradation of tetracycline hydrochloride. J Alloys Compd. 937. https://doi.org/10.1016/j.jallcom.2022.168425.

  41. Zarazúa-Morín ME, Torres-Martínez LM, Moctezuma E, Juárez-Ramírez I, Zermeño BB (2016) Synthesis, characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light. Res Chem Intermed 42:1029–1043. https://doi.org/10.1007/s11164-015-2071-9

    Article  CAS  Google Scholar 

  42. Dong G, Dong L, Lang K, Chai D, Guo D, Li J, Zhao M, Chen S, Zhang W (2022) Insight into the high-efficient electrocatalytic elimination toward antibiotics via introducing FeTiO3 interlayer under Ce-PbO2 coating. J Environ Chem Eng 10:108453. https://doi.org/10.1016/j.jece.2022.108453

    Article  CAS  Google Scholar 

  43. Azis T, DwiprayogoWibowo MN, Maulidiyah R (2018) A high-performance electrochemical sensor based on FeTiO 3synthesis coated on conductive substrates. Anal Bioanal Electrochem. 10:465–477

    Google Scholar 

  44. Aparna TK, Sivasubramanian R (2019) FeTiO3 nanohexagons based electrochemical sensor for the detection of dopamine in presence of uric acid. Mater Chem Phys 233:319–328. https://doi.org/10.1016/j.matchemphys.2019.05.073

    Article  CAS  Google Scholar 

  45. Guan XF, Zheng J, Zhao ML, Li LP, Li GS (2013) Synthesis of FeTiO3 nanosheets with 0001 facets exposed: Enhanced electrochemical performance and catalytic activity. RSC Adv 3:13635–13641. https://doi.org/10.1039/c3ra22125c

    Article  CAS  Google Scholar 

  46. Morín MEZ, Torres-Martínez L, Sanchez-Martínez D, Gómez-Solís C (2017) Photocatalytic performance of titanates with formula MTiO3 (M= Fe, Ni, and Co) synthesized by solvo-combustion method. Mater Res 20:1322–1331. https://doi.org/10.1590/1980-5373-MR-2016-0615

    Article  Google Scholar 

  47. Sharma YK, Kharkwal M, Uma S, Nagarajan R (2009) Synthesis and characterization of titanates of the formula MTiO3 (M = Mn, Fe Co, Ni and Cd) by co-precipitation of mixed metal oxalates. Polyhedron 28:579–585. https://doi.org/10.1016/j.poly.2008.11.056

    Article  CAS  Google Scholar 

  48. Ye F, Huang J, Xu Y, Zeng Q, Nan J, Wang L (2018) Polyfurfural-electrochemically reduced graphene oxide modified glassy carbon electrode for the direct determination of nitrofurazone. Anal Lett 51:728–741. https://doi.org/10.1080/00032719.2017.1360898

    Article  CAS  Google Scholar 

  49. Gan T, Li J, Xu L, Yao Y, Liu Y (2019) Construction of a voltammetric sensor based on MIL-101 hollow cages for electrocatalytic oxidation and sensitive determination of nitrofurazone. J Electroanal Chem 848:113287. https://doi.org/10.1016/j.jelechem.2019.113287

    Article  CAS  Google Scholar 

  50. Cheng J, Li Y, Zhong J, Lu Z, Wang G, Sun M, Jiang Y, Zou P, Wang X, Zhao Q, Wang Y, Rao H (2020) Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chem Eng J 398:125664. https://doi.org/10.1016/j.cej.2020.125664

    Article  CAS  Google Scholar 

  51. Chiu SH, Su YL, Le AVT, Cheng SH (2018) Nanocarbon material-supported conducting poly(melamine) nanoparticle-modified screen-printed carbon electrodes for highly sensitive determination of nitrofuran drugs by adsorptive stripping voltammetry. Anal Bioanal Chem 410:6573–6583. https://doi.org/10.1007/s00216-018-1262-9

    Article  CAS  PubMed  Google Scholar 

  52. Chen C, Chen W, Jiang J, Qian L, Qiu F (2021) Preparation and application of nitrofuran sensor in aquaculture water. Int J Environ Anal Chem 101:1099–1115. https://doi.org/10.1080/03067319.2019.1676423

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Ministry of Science and Technology, Taiwan, under the grant of MOST 111-2221-E-027-020-MY3. The authors also acknowledge the financial support from the Science and Engineering Research Board (SERB) through the Core Research Grant of EMR/2017/000116, the Ministry of Education through the FAST grant of F. No. 5-6/2013-TS.VII, and the Department of Science and Technology (DST) through the FIST grant of SR/FST/ETI-416/2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzyy-Jiann Wang or Murali Rangarajan.

Ethics declarations

Ethical approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 271 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, V.S., Kokulnathan, T., Wang, TJ. et al. Hydrothermal synthesis of iron titanate hexagonal nanoplates for electrochemical detection of nitrofurazone. Microchim Acta 191, 245 (2024). https://doi.org/10.1007/s00604-024-06300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06300-9

Keywords

Navigation