Skip to main content
Log in

Electrochemical characterization of praseodymium centers in Pr x Zr1−x O2 zirconias using electrocatalysis and photoelectrocatalysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The voltammetry of nanoparticles and scanning electrochemical microscopy are applied to characterize praseodymium centers in tetragonal and monoclinic zirconias, doped with praseodymium ions (Pr x Zr1−x O2), prepared via sol–gel routes. Doped zirconia nanoparticles were synthesized by a sol–gel liquid-phase route and characterized by different techniques, including X-ray diffraction powder pattern, ultraviolet–visible diffuse reflectance spectroscopy, infrared spectroscopy, and transmission electron microscopy (TEM). Gels annealed at around 400 °C yielded tetragonal Pr x Zr1−x O2 phases. The monoclinic forms of Pr-doped ZrO2 were obtained by annealing at temperatures higher than 1,100 °C. TEM micrographs proved that the size of the nanoparticles produced was dependent on their crystalline form, around 15 and 60 nm for tetragonal and monoclinic, respectively. The electrochemical study confirmed that a relatively high content of praseodymium cation was in the chemical state (IV), i.e., as Pr4+, in both zirconia host lattices. The catalytic and photocatalytic effects of Pr4+ centers located in the monoclinic zirconia lattice on nitrite reduction and oxygen evolution reaction were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Narula CK, Allison JE, Bauer DR, Gandhi AMHS (1996) Chem Mater 8:984–1003

    Article  CAS  Google Scholar 

  2. Badenes JA, Llusar M, Calbo J, Tena MA, Monrós G (2001) British Ceram Trans 100:251–255

    Article  CAS  Google Scholar 

  3. Zhuykov S (2007) Electrochemistry of zirconia gas sensors. CRC, Boca Raton

    Book  Google Scholar 

  4. Fidelus JD, Lojkowski W, Millers D, Grigorjeva L, Smits K, Piticescu RR (2007) Solid State Phenom 128:141–150

    Article  CAS  Google Scholar 

  5. Naskar MK, Ganguli D (1996) J Mater Sci 31:6263–6267

    Article  CAS  Google Scholar 

  6. Zhu J, van Ommen JG, Bouwmeester HJM, Lefferts J (2005) J Catal 233:434–441

    Article  CAS  Google Scholar 

  7. Moon J, Choi H, Kim H, Lee C (2002) Surf Coat Tech 155:1–10

    Article  CAS  Google Scholar 

  8. Chevalier J (2006) Biomaterials 27:535–543

    Article  CAS  Google Scholar 

  9. Brahim C, Ringuede A, Cassir M, Putkonen M, Niinisto L (2007) Appl Surf Sci 253:3962–3968

    Article  CAS  Google Scholar 

  10. Suchorski Y, Wrobel R, Becker S, Opalínska A, Narkiewicz U, Podsiadly M, Weiss A (2008) Acta Phys Polonica A 114:S125–S134

    CAS  Google Scholar 

  11. Corradi AB, Bondioli F, Ferrari AM (2001) Chem Mater 13:4550–4554

    Article  CAS  Google Scholar 

  12. Ramos-Brito F, Murrieta H, Hernández SJ, Camarillo AE, García-Hipólito M, Martínez-Martínez R, Álvarez-Fragoso O, Falcony C (2006) J Phys D Appl Phys 30:2079–2083

    Article  Google Scholar 

  13. Ramos-Brito F, Alejo-Armenta C, García-Hipólito M, Camarillo E, Hernández J, Murrieta AH, Falcony C (2008) Optical Mater 30:1840–1847

    Article  CAS  Google Scholar 

  14. Pawlak D, Frukacz Z, Mierczyk Z, Suchocki A, Zachara J (1998) J Alloys Comp 361:275–277

    Google Scholar 

  15. Logan AD, Shelef M (1994) J Mater Res 9:468–475

    Article  CAS  Google Scholar 

  16. O’Connell M, Morris MA (2000) Catal Today 59:387–393

    Article  Google Scholar 

  17. Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances, vol 20. Marcel Dekker, New York, pp 1–86

    Google Scholar 

  18. Grygar T, Marken F, Schröder U, Scholz F (2002) Collect Czech Chem Commun 67:163–208

    Article  CAS  Google Scholar 

  19. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  20. Doménech A, Alarcón J (2002) J Solid State Electrochem 6:443–450

    Article  Google Scholar 

  21. Doménech A, Aucejo R, Alarcón J, Navarro P (2004) Electrochem Commun 6:719–723

    Article  Google Scholar 

  22. Doménech A, Alarcón J (2002) Anal Chim Acta 452:11–22

    Article  Google Scholar 

  23. Doménech A, Alarcón J (2007) Anal Chem 79:6742–6751

    Article  Google Scholar 

  24. Doménech A, Moyá M, Doménech MT (2004) Anal Bioanal Chem 380:146–156

    Google Scholar 

  25. Doménech A, Torres FJ, Ruiz de Sola E, Alarcón J (2006) Eur J Inorg Chem :638–648

  26. Zhang J, Lever ABP, Pietro WJ (1994) Inorg Chem 33:1392–1398

    Article  CAS  Google Scholar 

  27. Keita B, Belhouari A, Nadjo L, Contant R (1995) J Electroanal Chem 381:243–250

    Article  Google Scholar 

  28. Doherty AP, Stanley MA, Leech D, Vos JG (1996) Anal Chim Acta 319:111–120

    Article  CAS  Google Scholar 

  29. Sunohara S, Nishimura K, Yahikozawa K, Ueno M, Enyo M, Takasu Y (1993) J Electroanal Chem 354:161–171

    Article  CAS  Google Scholar 

  30. Chen S-M (1998) J Electroanal Chem 475:23–30

    Google Scholar 

  31. Gao Z, Zhang Y, Wang G (1998) Anal Sci 14:1053–1058

    Article  CAS  Google Scholar 

  32. McCormac T, Fabré B, Bidan G (1997) J Electroanal Chem 427:155–159

    Article  CAS  Google Scholar 

  33. Liu SQ, Shi Z, Dong SJ (1998) Electroanalysis 10:891–896

    Article  CAS  Google Scholar 

  34. Ouani R, Rahmanifar M-S, Naderi P (2008) Electroanalysis 10:1092–1098

    Google Scholar 

  35. Migita Y, Yokohama H, Minami A, Mori T, Nojiri M, Suzuki S, Yamaguchi K (2009) Electroanalysis 21:2441–2446

    CAS  Google Scholar 

  36. Zheng J, Lu T, Cotton TM, Chumanov G (1999) J Phys Chem B 103:6567–6572

    Article  CAS  Google Scholar 

  37. Ranjit KT, Viswanathan B (2003) J Photochem Photobiol A Chem 154:299–302

    Article  CAS  Google Scholar 

  38. Sun C-C, Chou T-C (1998) Ind Eng Chem Res 37:4207–4214

    Article  CAS  Google Scholar 

  39. Sun C-C, Chou T-C (2000) J Molec Catal A Chem 151:133–145

    Article  CAS  Google Scholar 

  40. Mirceski V, Komorsky-Lovric S, Lovric M (2007) Square wave voltammetry, theory and applications. Springer, Berlin

    Google Scholar 

  41. Bard AJ, Fan R-FF, Kwak J, Lev O (1989) Anal Chem 61:132–138

    Article  CAS  Google Scholar 

  42. Bard AJ, Mirkin MV (2003) Scanning electrochemical microscopy. Taylor & Francis, Boca Raton

    Google Scholar 

  43. Mehrotra S, Bandyophyay AK (2007) J Alloys Comp 436:56–60

    Article  CAS  Google Scholar 

  44. Warmkessel JM, Lin S-H, Eyring L (1969) Inorg Chem 8:875–882

    Article  CAS  Google Scholar 

  45. Olazcuaga R, Le Polles G, Kira E, Le Flem G, Maestro P (1987) J Solid State Chem 71:570–573

    Article  CAS  Google Scholar 

  46. Ocaña M, Caballero A, Gonzalez-Elipe AR, Tartaj P, Serna CJ (1998) J Solid State Chem 139:412–415

    Article  Google Scholar 

  47. Ocaña M, Caballero A, Gonzalez-Elipe AR, Tartaj P, Serna CJ, Merino RI (1999) J Eur Ceram Soc 19:641–648

    Article  Google Scholar 

  48. Lyons MEG, Lyons CH, Michas A, Bartlett PN (1992) Analyst 117:1271–1280

    Article  CAS  Google Scholar 

  49. Trasatti S (1994) Transition metal oxides: versatile materials for electrocatalysis. In: Lipkowski J, Ross PN (eds) The electrochemistry of novel materials. VCH, New York, pp 207–295

    Google Scholar 

  50. Dharuman V, Chandrasekara Pillai K (2006) J Solid State Electrochem 10:967–979

    Article  CAS  Google Scholar 

  51. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. IUPAC-Marcel Dekker, New York

    Google Scholar 

  52. Dharuman V (2006) Chandrasekara Pillai K. J Solid State Electrochem 12:967–979

    Article  Google Scholar 

  53. Brainina KhZ, Galperin LG, Galperin AL (2010) J Solid State Electrochem 14:981–988

    Article  CAS  Google Scholar 

  54. Grygar T (1997) J Solid State Electrochem 1:77–82

    Article  CAS  Google Scholar 

  55. Grygar T (1998) J Solid State Electrochem 2:127–136

    Article  CAS  Google Scholar 

  56. Falgairette C, Xia C, Li YD, Harbich W, Foti G, Comninellis C (2010) J Appl Electrochem 40:1901–1907

    Article  CAS  Google Scholar 

  57. Peng J, Zhu Y, Wang D, Jin X, Chen GZ (2009) J Mater Chem 19:2803–2809

    Article  CAS  Google Scholar 

  58. Morss LR (1976) Chem Rev 76:827–841

    Article  CAS  Google Scholar 

  59. Scholz F, Hermes M (1999) Electrochem Commun 1:345–348 (see corrigendum in Scholz F, Hermes M (2000) Electrochem Commun 2:814)

  60. Doménech A, Formentín P, García H, Sabater MJ (2000) Eur J Inorg Chem :1339–1344

  61. Doménech A, Sánchez S, Doménech MT, Gimeno JV, Bosch F, Yusá DJ, Saurí MC (2002) Electroanalysis 14:685–696

    Article  Google Scholar 

  62. Lovric M, Hermes M, Scholz F (1998) J Solid State Electrochem 2:401–404

    Article  CAS  Google Scholar 

  63. Trasatti S (1984) Electrochim Acta 29:1503–1512

    Article  CAS  Google Scholar 

  64. Singh RN, Madani M, Koenig J-F, Poillerat G, Gautier JL, Chartier P (1990) J Appl Electrochem 20:442–446

    Article  CAS  Google Scholar 

  65. Balamurugan A, Chen S-M (2007) J Solid State Electrochem 11:1679–1687

    Article  CAS  Google Scholar 

  66. Karnicka K, Ekhard K, Guschin DA, Stoica L, Kulesza PJ, Schuhmann W (2007) Electrochem Commun 9:1998–2002

    Article  CAS  Google Scholar 

  67. Guadagnini L, Maljusch A, Chen X, Neugebauer S, Tonelli D, Schuhmann W (2009) Electrochim Acta 54:3753–3758

    Article  CAS  Google Scholar 

  68. Xu W, Liu Ch, Xing W, Lu T (2007) Electrochem Commun 9:180–184

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the Ministry of Science and Innovation through the program Consolider 2010 (Project CSD2010-00065) and MEC Project CTQ2006-15672-C05-05/BQU, supported with ERDF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doménech, A., Montoya, N. & Alarcón, J. Electrochemical characterization of praseodymium centers in Pr x Zr1−x O2 zirconias using electrocatalysis and photoelectrocatalysis. J Solid State Electrochem 16, 963–975 (2012). https://doi.org/10.1007/s10008-011-1470-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1470-0

Keywords

Navigation