Skip to main content
Log in

Influence of Pad Surface Finish on the Microstructure Evolution and Intermetallic Compound Growth in Homogeneous Sn-Bi and Sn-Bi-Ag Solder Interconnects

  • Electronic Packaging and Interconnections 2021
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low reflow temperature solder interconnect technology based on Sn-Bi alloys is currently being considered as an alternative for Sn-Ag-Cu solder alloys to form solder interconnects at significantly lower melting temperatures than required for Sn-Ag-Cu alloys. Microstructural evolution after reflow and aging, especially of intermetallic compound (IMC) growth at solder/pad surface finish interfaces, is important to understanding fatigue life and crack paths in the solder joints. This study describes intermetallic growth in homogeneous solder joints of Sn-Bi eutectic alloy and Sn-Bi-Ag alloys formed with electroless nickel-immersion gold (ENIG) and Cu-organic surface protection (Cu-OSP) surface finishes. Experimental observations revealed that, during solid state annealing following reflow, the 50nm Au from the ENIG surface finish catalyzed rapid (Ni,Au)Sn4 intermetallic growth at the Ni-solder interface in both Sn-Bi and Sn-Bi-Ag homogeneous joints, which led to significant solder joint embrittlement during fatigue testing. Intermetallic growth of (Ni,Au)Sn4 was decreased by Ag alloying of eutectic Sn-Bi solder and was completely eliminated by changing the metallization from ENIG to Cu-OSP on the board side of the assembly. The reduction in (Ni,Au)Sn4 growth rate with Ag additions is attributed to changes in grain boundary wetting of the IMC by Bi with Ag alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Bay Area Circuits, Fremont, CA 94538, USA.

  2. Scientific Alloys Corporation, Clifton, NJ 07011.

References

  1. Y. Li and D. Goyal, eds., 3D Microelectronic Packaging: from Fundamentals to Applications, vol. 57 (Springer International Publishing, 2017).

  2. P. Vianco and M. Neilsen, Processing and Reliability of Solder Interconnections in Stacked Packaging. In 3D Microelectronic Packaging (Springer, Cham, 2021), p. 471

  3. J. Bath, R. Garcia, N. Uchida, H. Takahashi, G. Clark, and M. Itoh, Global SMT Packag. 9, 10 (2009).

    Google Scholar 

  4. W.J. Boettinger, C.A. Handwerker, B. Newbury, T.Y. Pan, and J.M. Nicholson, Mechanism of fillet lifting in Sn-Bi alloys J. Electron. Mater 31, 545 (2002).

    Article  CAS  Google Scholar 

  5. G. Henshall, J. Bath, and C. A. Handwerker, eds., Lead-free Solder Process Development (Wiley - IEEE Press, 2011).

  6. F. Hua, Z. Mei, J. Glazer, In 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No. 98CH36206) (1998, May), p. 277

  7. E. Ferrer, H. Holder, In JEDEX Conference, San Jose, CA, March (2003), p. 22

  8. R. Aspandiar, K. Byrd, K. K. Tang, L. Campbell, S. Mokler, In Proceedings of the 2015 APEX Conference, (2015, February)

  9. O. H. Chen, K. Byrd, S. Mokler, K. K. Tang, R. Aspandiar, In Proceedings of the International Conference on Soldering and Reliability (2015, May)

  10. O. H. Chen, A. Molina, R. Aspandiar, K. Byrd, S. Mokler, K. K. Tang, In Proceedings of SMTA International (2015, September), p. 215

  11. S. Mokler, R. Aspandiar, K. Byrd, O. H. Chen, S. Walwadkar, K. K. Tang, M. Renavikar, S. Sane, In Proceedings of SMTA International (2016, September), p. 318

  12. B.L. Silva, M.G.C. Xavier, A. Garcia, and J.E. Spinelli, Cu and Ag additions affecting the solidification microstructure and tensile properties of Sn-Bi lead-free solder alloys Mat. Sci. Eng. A: Struct. 705, 325 (2017).

    Article  CAS  Google Scholar 

  13. S. Sahasrabudhe, S. Mokler, M. Renavikar, S. Sane, K. Byrd, E. Brigham, O. Jin, P. Goonetilleke, Nilesh Badwe, S. Parupalli, in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC) (2018, May), p. 1455

  14. B.J. Lee, C.S. Oh, and J.H. Shim, Thermodynamic assessments of the Sn-In and Sn-Bi binary systems J. Electron. Mater 25, 983 (1996).

    Article  CAS  Google Scholar 

  15. J.H. Kim, Y.C. Lee, S.M. Lee, and S.B. Jung, Effect of surface finishes on electromigration reliability in eutectic Sn–58Bi solder joints Microelectron. Eng. 120, 77 (2014).

    Article  CAS  Google Scholar 

  16. P.L. Liu, and J.K. Shang, Fracture of Sn-Bi/Ni (P) interfaces J. Mater. Res. 20, 818 (2005).

    Article  CAS  Google Scholar 

  17. J.W. Yoon, C.B. Lee, and S.B. Jung, Interfacial reactions between Sn-58 mass% Bi eutectic solder and (Cu, electroless Ni-P/Cu) substrate Mater. Trans. 43, 1821 (2002).

    Article  Google Scholar 

  18. S.M. Lee, J.W. Yoon, and S.B. Jung, Interfacial reaction and mechanical properties between low melting temperature Sn–58Bi solder and various surface finishes during reflow reactions J. Mater. Sci.: Mater El. 26, 1649 (2015).

    CAS  Google Scholar 

  19. H.F. Zou, Q.K. Zhang, and Z.F. Zhang, Interfacial microstructure and mechanical properties of Sn-Bi/Cu joints by alloying Cu substrate Mater. Sci. Eng. A: Struct. 532, 167 (2012).

    Article  CAS  Google Scholar 

  20. W.R. Myung, Y. Kim, K.Y. Kim, and S.B. Jung, Drop reliability of epoxy-contained Sn-58 wt% Bi solder joint with ENIG and ENEPIG surface finish under temperature and humidity test J. Electron. Mater. 45, 3651 (2016).

    Article  CAS  Google Scholar 

  21. L.T. Chen, and C.M. Chen, Electromigration study in the eutectic Sn-Bi solder joint on the Ni/Au metallization J. Mater. Res. 21, 962 (2006).

    Article  CAS  Google Scholar 

  22. B.L. Young, J.G. Duh, and G.Y. Jang, Compound formation for electroplated Ni and electroless Ni in the under-bump metallurgy with Sn-58Bi solder during aging J. Electron. Mater. 32, 1463 (2003).

    Article  CAS  Google Scholar 

  23. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, and C.R. Kao, Selective interfacial reaction between Ni and eutectic BiSn lead-free solder Chem. Mater. 13, 1051 (2001).

    Article  CAS  Google Scholar 

  24. J. Wang, H.S. Liu, L.B. Liu, and Z.P. Jin, Interfacial reaction between Sn-Bi alloy and Ni substrate J. Electron. Mater. 35, 1842 (2006).

    Article  CAS  Google Scholar 

  25. M.Y. Chiu, S.Y. Chang, Y.H. Tseng, Y.C. Chan, and T.H. Chuang, Characterization of intermetallic compounds formed during the interfacial reactions of liquid Sn and Sn-58Bi solders with Ni substrates Z. Matallkd. 93, 248 (2002).

    Article  CAS  Google Scholar 

  26. K.P. Pun, M.N. Islam, J. Rotanson, C.W. Cheung, and A.H. Chan, Enhancement of Sn-Bi-Ag solder joints with ENEPIG surface finish for low-temperature interconnection J. Electron. Mater. 47, 5191 (2018).

    Article  CAS  Google Scholar 

  27. J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects Acta Mater. 54, 2907 (2006).

    Article  CAS  Google Scholar 

  28. J. Li, S.H. Mannan, M.P. Clode, C. Liu, K. Chen, D.C. Whalley, D.A. Hutt, and P.P. Conway, Interfacial reaction between molten Sn-Bi based solders and electroless Ni-P coatings for liquid solder interconnects IEEE T. Compon. Pack. T. 31, 574 (2008).

    Article  CAS  Google Scholar 

  29. J. Li, S.H. Mannan, M.P. Clode, K. Chen, D.C. Whalley, C. Liu, and D.A. Hutt, Comparison of interfacial reactions of Ni and Ni–P in extended contact with liquid Sn–Bi-based solders Acta Mater 55, 737 (2007).

    Article  CAS  Google Scholar 

  30. W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy J. Electron. Mater. 37, 982 (2008).

    Article  CAS  Google Scholar 

  31. W.R. Myung, M.K. Ko, Y. Kim, and S.B. Jung, Effects of Ag content on the reliability of LED package component with Sn–Bi–Ag solder J. Mater. Sci.: Mater. El. 26, 8707 (2015).

    CAS  Google Scholar 

  32. Z.M. Guan, G.X. Liu, and T. Liu, Kinetics of interface reaction in 40Sn-Bi/Cu and 40Sn-Bi-2Ag/Cu systems during aging in solid state IEEE Trans. Adv. Packag. 23, 737 (2000).

    Article  CAS  Google Scholar 

  33. K. Suganuma, T. Sakai, K.S. Kim, Y. Takagi, J. Sugimoto, and M. Ueshima, Thermal and mechanical stability of soldering QFP with Sn-Bi-Ag lead-free alloy IEEE Trans. Electron. Packag. Manuf. 25, 257 (2002).

    Article  CAS  Google Scholar 

  34. Z. Lai, and D. Ye, Microstructure and properties of Sn-10Bi-xCu solder alloy/joint J. Electron. Mater. 45, 3702 (2016).

    Article  CAS  Google Scholar 

  35. C. Zhang, S.D. Liu, G.T. Qian, Z. Jian, and X. Feng, Effect of Sb content on properties of Sn—Bi solders T. Nonferr. Metal. Soc. 24, 184 (2014).

    Article  CAS  Google Scholar 

  36. O. Mokhtari, and H. Nishikawa, Correlation between microstructure and mechanical properties of Sn–Bi–X solders Mater. Sci. Eng. A: Struct. 651, 831 (2016).

    Article  CAS  Google Scholar 

  37. O. Mokhtari, and H. Nishikawa, Effects of In and Ni addition on microstructure of Sn-58Bi solder joint J. Electron. Mater. 43, 4158 (2014).

    Article  CAS  Google Scholar 

  38. X. Chen, F. Xue, J. Zhou, and Y. Yao, Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn–Bi based lead-free solder J. Alloy. Compd. 633, 377 (2015).

    Article  CAS  Google Scholar 

  39. Q. Li, N. Ma, Y. Lei, J. Lin, H. Fu, and J. Gu, Characterization of low-melting-point Sn-Bi-In lead-free solders J. Electron. Mater. 45, 5800 (2016).

    Article  Google Scholar 

  40. Y.C. Huang, and S.W. Chen, Effects of Co alloying and size on solidification and interfacial reactions in Sn-57 wt.% Bi-(Co)/Cu couples J. Electron. Mater. 40, 62 (2011).

    Article  CAS  Google Scholar 

  41. S. Zhou, O. Mokhtari, M.G. Rafique, V.C. Shunmugasamy, B. Mansoor, and H. Nishikawa, Improvement in the mechanical properties of eutectic Sn-58Bi alloy by 0.5 and 1 wt% Zn addition before and after thermal aging J. Alloy. Compd. 765, 1243 (2018).

    Article  CAS  Google Scholar 

  42. O. Mokhtari, S. Zhou, Y.C. Chan, and H. Nishikawa, Effect of Zn addition on interfacial reactions between Sn-Bi solder and Cu substrate Mater. Trans. 57, 1272 (2016).

    Article  CAS  Google Scholar 

  43. F. Wang, H. Chen, Y. Huang, L. Liu, and Z. Zhang, Recent progress on the development of Sn–Bi based low-temperature Pb-free solders J. Mater. Sci.: Mater. El. 30, 3222 (2019).

    Article  CAS  Google Scholar 

  44. T. Dale, Y. Singh, I. Bernander, G. Subbarayan, C.A. Handwerker, P. Su, and B. Glasauer, Fatigue life of Sn3. 0Ag0. 5Cu solder alloy under combined cyclic shear and constant tensile/compressive loads J. Electron. Packaging. 142, 041001 (2020).

    Article  Google Scholar 

  45. D. Bhate, D. Chan, G. Subbarayan, T.C. Chiu, V. Gupta, and D.R. Edwards, Constitutive behavior of Sn3. 8Ag0. 7Cu and Sn1. 0Ag0. 5Cu alloys at creep and low strain rate regimes IEEE T. Compon. Pack. T. 31, 622 (2008).

    Article  CAS  Google Scholar 

  46. Yamakami, M., Kajihara, M., Solid-state reactive diffusion between sn and electroless Ni–P at 473 K. Materials Transactions. 0812150625-0812150625 (2009)

  47. C. Schmetterer, J. Vizdal, A. Kroupa, A. Kodentsov, and H. Ipser, The Ni-rich part of the Ni-P-Sn system: isothermal sections J. Electron. Mater. 38, 2275 (2009).

    Article  CAS  Google Scholar 

  48. W.J. Boettinger, M.D. Vaudin, M.E. Williams, L.A. Bendersky, and W.R. Wagner, Electron backscattered diffraction and energy dispersive X-ray spectroscopy study of the phase NiSn4 J. Electron. Mater. 32, 511 (2003).

    Article  CAS  Google Scholar 

  49. S.A. Belyakov, and C.M. Gourlay, The influence of Cu on metastable NiSn4 in Sn-3.5Ag-xCu/ENIG joints J. Electron. Mater. 45, 12 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Intel Corporation for supporting this research. The authors acknowledge Chven Mitchell who acquired x-ray microscope images for this paper on a Zeiss Xradia 510 Versa 3D x-ray Microscope purchased through the EVPRP Major Multi-User Equipment Program 2017 at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Handwerker.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 2076 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wu, Y., Dale, T.F. et al. Influence of Pad Surface Finish on the Microstructure Evolution and Intermetallic Compound Growth in Homogeneous Sn-Bi and Sn-Bi-Ag Solder Interconnects. J. Electron. Mater. 50, 6615–6628 (2021). https://doi.org/10.1007/s11664-021-09256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09256-1

Keywords

Navigation