Skip to main content
Log in

Effect of Soldering Temperature on the Reliability of Sn-Ag-Cu Lead-Free Solder Joints

  • TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper investigates the effect of soldering temperature on solder joint voids and reliability of flip-chip LED chips during reflow soldering. Lead-free solder SAC305 was used as solder paste. The void ratio of the flip-chip LED solder joint at 250°C, 260°C, 270°C, 280°C, and 290°C reflow soldering temperatures was detected by x-ray detector. Shear tests were conducted to evaluate the influence of interfacial reactions on the mechanical reliability of solder joints. The distribution of voids in the shear section was observed by scanning electron microscope (SEM). Next, the photoelectric and thermal properties of FC-LED filament were tested and analyzed. Finally, a high-temperature and high-humidity aging experiment was carried out to test the reliability of the LED filament. The results show that the void ratio of the LED filament soldering joint is the lowest when the soldering temperature is 270°C. The small void ratio of the solder joints results in lower steady-state voltage and junction temperature of the flip-chip LED filament. As the void density in the solder joint decreases, the shear strength of the solder joint increases. At this time, the shear resistance and mechanical reliability are the highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Kariya, T. Hosoi, S. Terashima, and T.M. Otsuka, J. Electron. Mater. 33, 321 (2004).

    Article  CAS  Google Scholar 

  2. M.G. Cho, S.K. Kang, and S.H.M. Lee, J. Electron. Mater. 36, 1501 (2007).

    Article  CAS  Google Scholar 

  3. I.E. Anderson and J.L. Harringa, J. Electron. Mater. 33, 1485 (2004).

    Article  CAS  Google Scholar 

  4. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  5. Z. Guo, X. Wang, Y. Liu, Y. Liu, and F. Li, J. Constr. Steel Res. 172, 106174 (2020).

    Article  Google Scholar 

  6. H. Yongle, L. Yifei, X. Fei, L. Binli, and T. Xin, Microelectron Reliab. 109, 113637 (2020).

    Article  CAS  Google Scholar 

  7. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloys Compd. 352, 226 (2003).

    Article  CAS  Google Scholar 

  8. C. Ming, C. Lung, and Lin, J. Electron. Mater. 32, 1426 (2003).

    Article  Google Scholar 

  9. L. Yang, J. Ge, Y. Zhang, J. Dai, and Y. Jing, J. Mater. Sci. Mater. Electron. 26, 613 (2015).

    Article  CAS  Google Scholar 

  10. S. Lei and Z. Liang, Adv. Mater. Sci. Eng. 2015, 1 (2015).

    Google Scholar 

  11. L.L. Liou, B. Bayraktaroglu, and C.I. Huang, Solid-State Electron. 39, 165 (1996).

    Article  CAS  Google Scholar 

  12. L. Ciampolini, M. Ciappa, and P. Malberti, Microelectron. J. 30, 1115 (1999).

    Article  Google Scholar 

  13. J. Chengshuo, F. Jiajie, Q. Cheng, Z. Hao, F. Xuejun, G. Weiling, and Z. Guoqi, IEEE Trans. Compon. Packag. Manuf. 99, 1 (2018).

    Google Scholar 

  14. Y. Liu, S.Y.Y. Leung, J. Zhao, C.K.Y. Wong, C.A. Yuan, G. Zhang, F. Sun, and L. Luo, Microelectron. Reliab. 54, 2028 (2014).

    Article  CAS  Google Scholar 

  15. L. Hailong, A. Rong, W. Chunqing, T. Yanhong, and J. Zhi, Mater. Lett. 144, 97 (2015).

    Article  CAS  Google Scholar 

  16. D. Bušek, K. Dušek, D. Růžička, M. Plaček, P. Mach, J. Urbánek, and J. Starý, Microelectron. Reliab. 60, 135 (2016).

    Article  CAS  Google Scholar 

  17. T.C. Liu, C.M. Liu, Y.S. Huang, C. Chen, and K.N. Tu, Scr. Mater. 68, 241 (2013).

    Article  CAS  Google Scholar 

  18. K. Weinberg, T. Böhme, and W.H. Müller, Comput. Mater. 45, 827 (2009).

    Article  CAS  Google Scholar 

  19. S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 123 (2016).

    Article  CAS  Google Scholar 

  20. Giro and A. Violeta, Compr. Anal. Chem. 75, 153 (2017).

    Article  CAS  Google Scholar 

  21. T. Tian, K. Chen, A.A. Macdowell, D. Parkinson, Y.S. Lai, and K.N. Tu, Scr. Mater. 65, 646 (2011).

    Article  CAS  Google Scholar 

  22. P. Wild, D. Lorenz, T. Grözinger, and A. Zimmermann, Microelectron Reliab. 85, 163 (2018).

    Article  CAS  Google Scholar 

  23. M. Rauer, A. Volkert, T. Schreck, S. Härter, and M. Kaloudis, J Fail. Anal. Prev. 14, 272 (2014).

    Article  Google Scholar 

  24. A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, and M. Kunz, Microelectron. Reliab. 52, 530 (2012).

    Article  CAS  Google Scholar 

  25. K.C. Otiaba, R.S. Bhatti, N.N. Ekere, S. Mallik, M.O. Alam, E.H. Amalu, and M. Ekpu, Microelectron. Reliab. 52, 1409 (2012).

    Article  CAS  Google Scholar 

  26. M.I. Okereke and L. Yuxiao, Appl. Therm. Eng. 142, 346 (2018).

    Article  Google Scholar 

  27. S. Baricordi, G. Calabrese, F. Gualdi, V. Guidi, M. Pasquini, L. Pozzetti, and D. Vincenzi, Sol. Energy Mater. Sol. Cells 111, 133 (2013).

    Article  CAS  Google Scholar 

  28. W.B. Hance and N.C. Lee, Solder Surf. Mount Technol. 5, 16 (1993).

    Article  Google Scholar 

  29. M.A.A.M. Salleh, C.M. Gourlay, J.W. Xian, S.A. Belyakov, H. Yasuda, and S.D. Mcdonald, Sci. Rep. UK 7, 40010 (2017).

    Article  CAS  Google Scholar 

  30. I.E. Anderson, B.A. Cook, J. Harringa, and R.L. Terpstra, J. Electron. Mater. 31, 1166 (2002).

    Article  CAS  Google Scholar 

  31. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    Article  CAS  Google Scholar 

  32. D. Goyal, T. Lane, P. Kinzie, C. Panichas, and O. Villalobos, Electron Comp Tech Con., p. 732 (2002).

  33. M. Yunus, K. Srihari, J.M. Pitarresi, and A. Primavera, Microelectron. Reliab. 43, 2077 (2003).

    Article  Google Scholar 

  34. Y.W. Chang, Y. Cheng, F. Xu, L. Helfen, T. Tian, M. Di Michiel, C. Chen, K.N. Tu, and T. Baumbach, Acta Mater. 117, 100 (2016).

    Article  CAS  Google Scholar 

  35. J.M. Song, H.Y. Chuang, and Z.M. Wu, J. Electron. Mater. 36, 1516 (2007).

    Article  CAS  Google Scholar 

  36. A.K. Gain, T. Fouzder, Y.C. Chan, and W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011).

    Article  CAS  Google Scholar 

  37. X.X.X. Xiaoqiang, Z.J.Z. Jianwei, C.J.C. Jonghyun, and C.M.C. Myungkee, IC Electron. Packag. Technol. (2011). https://doi.org/10.1109/ICEPT.2011.6066934.

    Article  Google Scholar 

  38. G. Chen, X.H. Wang, J. Yang, W.L. Xu, and Q. Lin, Microelectron. Reliab. 108, 113634 (2020).

    Article  CAS  Google Scholar 

  39. K. Mehrabi, F. Khodabakhshi, E. Zareh, A. Shahbazkhan, and A. Simchi, J. Alloys Compd. 688, 143 (2016).

    Article  CAS  Google Scholar 

  40. C.M.T. Law, C.M.L. Wu, D.Q. Yu, L. Wang, and J.K.L. Lai, J. Electron. Mater. 35, 89 (2006).

    Article  CAS  Google Scholar 

  41. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, and R. Sidhu, Eng. Fract. Mech. 131, 9 (2014).

    Article  Google Scholar 

  42. C.J. Lee, K.D. Min, H.J. Park, and S.B. Jung, J. Alloys Compd. 820, 153077 (2020).

    Article  CAS  Google Scholar 

  43. L. Lin, Z.Z. Chen, H.P. Pan, S.L. Qi, P. Liu, Z.X. Qin, T.J. Yu, B. Zhang, Y.Z. Tong, and G.Y. Zhang, Phys. Status Solidi-R 4, 2834 (2007).

    CAS  Google Scholar 

  44. Y.T. Chin, P.K. Lam, H.K. Yow, and T.Y. Tou, J. Mater. Res. 25, 1304 (2010).

    Article  CAS  Google Scholar 

  45. X. Luo, R. Hu, S. Liu, and K. Wang, Prog. Energy Combust. 56, 1 (2016).

    Article  Google Scholar 

  46. X. Yu, L. Xiang, N. Pei, S. Zhou, and X. Luo, IEEE Trans. Electron. Device 67, 3655 (2020).

    Article  CAS  Google Scholar 

  47. C. Morando, O. Fornaro, O. Garbellini, and H. Palacio, Procedia Mater. 1, 80 (2012).

    Article  CAS  Google Scholar 

  48. G.J. Jeong, H.D. Yoo, K.K. Kim, and S.N. Lee, J. Vac. Sci. Technol. B 33, 051205 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by Shanghai Alliance Plan (LM201978), the Science and Technology Planning Project of Zhejiang Province, China (2018C01046), Enterprise-funded Latitudinal Research Projects (J2016-141), (J2017-171), (J2017-293), (J2017-243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yuefeng or Zou Jun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xinmeng, Z., Yuefeng, L., Jun, Z. et al. Effect of Soldering Temperature on the Reliability of Sn-Ag-Cu Lead-Free Solder Joints. J. Electron. Mater. 50, 869–880 (2021). https://doi.org/10.1007/s11664-020-08715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08715-5

Keywords

Navigation