Skip to main content
Log in

A Plausible SAM IR APD with HgCdTe Heterojunctions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a plausible separate absorption and multiplication infrared avalanche photodiode (SAM IR APD) with HgCdTe heterojunctions was investigated, including a design method and a comparative study of multiplication layer (ML) designs. The selection of wavelength to be detected determines the energy bandgap of the absorption layer (AL). After this, there are two choices of the ML to make a SAM IR APD, one a larger bandgap material and the other smaller. In this study, electrostatic analysis, dark current modeling and simulation were performed on MWIR detecting HgCdTe APDs with three choices of the MLs. It is shown that the SAM IR APD with the larger band gap ML could provide great advantages in terms of extremely low dark current and high sensitivity. Hence, a SAM IR APD with larger bandgap ML can be used to realize high sensitivity and extremely low power IR APDs that are preferred for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rothman, J. Electron. Mater. 47, 5656 (2018).

    Article  Google Scholar 

  2. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, J. Electron. Mater. 35, 1166 (2006).

    Article  CAS  Google Scholar 

  3. A. Kerlain, G. Bonnouvrier, L. Rubaldo, G. Decaens, Y. Reibel, P. Abraham, J. Rothman, L. Mollard, and E. De Borniol, J. Electron. Mater. 41, 2943 (2012).

    Article  CAS  Google Scholar 

  4. J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, J. Electron. Mater. 43, 2970 (2014).

    Article  CAS  Google Scholar 

  5. G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, J. Electron. Mater. 36, 963 (2007).

    Article  CAS  Google Scholar 

  6. J. Rothman, L. Mollard, S. Goȗt, L. Bonnefond, and J. Wlassow, J. Electron. Mater. 40, 1757 (2011).

    Article  CAS  Google Scholar 

  7. M.C. Chen, R.S. List, D. Chandra, M.J. Bevan, L. Colombo, and H.F. Schaake, J. Electron. Mater. 25, 1375 (1996).

    Article  CAS  Google Scholar 

  8. A. Rogalski, Infrared Phys. Technol. 41, 213 (2000).

    Article  CAS  Google Scholar 

  9. P. Martyniuk, M. Kopytko, and A. Rogalski, Opto-Electron. Rev. 22, 127 (2014).

    CAS  Google Scholar 

  10. W.C. Qiu, W.-D. Hu, L. Chen, C. Lin, X.A. Cheng, X.S. Chen, and W. Lu, IEEE Trans. Electron Devices 62, 1926 (2015).

    Article  CAS  Google Scholar 

  11. M. Kopytko, J. Wróbel, K. Jóźwikowski, A. Rogalski, J. Antoszewski, N.D. Akhavan, G.A. Umana-Membreno, L. Faraone, and C.R. Becker, J. Electron. Mater. 44, 158 (2015).

    Article  CAS  Google Scholar 

  12. E.P.G. Smith, E.A. Patten, P.M. Goetz, G.M. Venzor, J.A. Roth, B.Z. Nosho, J.D. Benson, A.J. Stoltz, J.B. Varesi, J.E. Jensen, S.M. Johnson, and W.A. Radford, J. Electron. Mater. 35, 1145 (2006).

    Article  CAS  Google Scholar 

  13. T.J. Lyon, B. Baumgratz, G. Chapman, E. Gordon, A.T. Hunter, M. Jack, J.E. Jensen, W. Johnson, B. Johs, K. Kosai, W. Larsen, G.L. Olson, M. Sen, B. Walker, and O.K. Wu, J. Cryst. Growth 201–202, 980 (1999).

    Article  Google Scholar 

  14. M.S. Lundstrom and R.J. Schuelke, IEEE Trans. Electron Devices 30, 1151 (1983).

    Article  Google Scholar 

  15. M.S. Lundstrom and R.J. Schuelke, Solid State Electron. 25, 683 (1982).

    Article  CAS  Google Scholar 

  16. J.D. Beck, M. Kinch, and X. Sun, Opt. Eng. 53, 081906 (2014).

    Article  Google Scholar 

  17. M.A. Kinch, State-of-the-Art Infrared Detector Technology (Bellingham: SPIE, 2014).

    Book  Google Scholar 

  18. A.G.U. Perera, Y.F. Lao, P.S. Wijewarnasuriya, and S.S. Krishna, J. Electron. Mater. 45, 4626 (2016).

    Article  CAS  Google Scholar 

  19. M.H. Weiler and M.B. Reine, J. Electron. Mater. 9, 1329 (1995).

    Article  Google Scholar 

  20. J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron Devices 48, 1326 (2001).

    Article  CAS  Google Scholar 

  21. N.D. Akhavan, G. Jolley, G.A. Umana-Membreno, J. Antoszewski, and L. Faraone, IEEE Trans. Electron Devices 62, 722 (2015).

    Article  CAS  Google Scholar 

  22. Y. Nemirovsky and I. Bloom, Infrared Phys. 27, 143 (1987).

    Article  CAS  Google Scholar 

  23. D. Rosenfeld and G. Bahir, IEEE Trans. Electron Devices 39, 1638 (1992).

    Article  CAS  Google Scholar 

  24. G.M. Williams and R.E. De Wames, J. Electron. Mater. 24, 1239 (1995).

    Article  CAS  Google Scholar 

  25. S.K. Singh, V. Gopal, R.K. Bhan, and V. Kumar, Semicond. Sci. Technol. 15, 752 (2000).

    Article  CAS  Google Scholar 

  26. S. Velicu, R. Ashokan, and S. Sivananthan, J. Electron. Mater. 29, 823 (2000).

    Article  CAS  Google Scholar 

  27. V. Gopal, X. Xie, Q. Liao, and X. Hu, Infrared Phys. Technol. 64, 56 (2014).

    Article  CAS  Google Scholar 

  28. M. Kopytko, Infrared Phys. Technol. 64, 47 (2014).

    Article  CAS  Google Scholar 

  29. A. Ferron, J. Rothman, and O. Gravrand, J. Electron. Mater. 42, 3303 (2013).

    Article  CAS  Google Scholar 

  30. A.D.D. Dwivedi, J. Appl. Phys. 110, 043101 (2011).

    Article  Google Scholar 

  31. M.A. Kinch, Fundamentals of Infrared Detector Materials (Bellingham: SPIE, 2007), pp. 82–89.

    Book  Google Scholar 

  32. R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuits, 2nd ed. (Singapore: Wiley, 1986), pp. 242–245.

    Google Scholar 

  33. W. Shockley, Solid State Electron. 2, 35 (1961).

    Article  Google Scholar 

  34. J. Abautret, J.P. Perez, A. Evirgen, F. Martinez, P. Christol, J. Fleury, H. Sik, R. Cluzel, A. Ferron, and J. Rothman, J. Appl. Phys. 113, 183716 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hoseo University research grant in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-man Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Sm., Grein, C.H. A Plausible SAM IR APD with HgCdTe Heterojunctions. J. Electron. Mater. 48, 8163–8171 (2019). https://doi.org/10.1007/s11664-019-07659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07659-9

Keywords

Navigation