Skip to main content
Log in

Modeling of Dark Current in HgCdTe Infrared Detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents modeling work carried out using a finite-element modeling approach. The physical models implemented for HgCdTe infrared photodetectors are reviewed. In particular, generation–recombination models such as Shockley–Read–Hall through a trap level in a narrow bandgap and Auger recombination are included. These well-established models are described using widely published analytical expressions. This paper highlights both the unique set of trap parameters found to fit the dark current as a function of temperature and composition for mercury-vacancy p-type-doped photodiodes and their use in a finite-element code. An equivalent set of trap parameters is also proposed for indium n-type-doped material in a p-on-n photodiode simulated in three dimensions. Device simulations also include the impact ionization process to fine-tune the saturation dark current. Finally, excess dark current is also modeled with the help of nonlocal band-to-band tunneling, which requires no fitting parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Jóźwikowski, M. Kopytko, and A. Rogalski, J. Appl. Phys. 112, 033718 (2012).

    Article  Google Scholar 

  2. F. Bertazzi, M. Goano, and E. Bellotti, J. Electron. Mater. 40, 1663 (2011).

    Article  CAS  Google Scholar 

  3. P.Y. Emelie, J.D. Phillips, S. Velicu, and P.S. Wijewarnasuriya, J. Phys. D: Appl. Phys. 42, 234003 (2009).

    Article  Google Scholar 

  4. K. Jóźwikowski, M. Kopytko, and A. Rogalski, J. Electron. Mater. 41, 2766 (2012).

    Article  Google Scholar 

  5. A.R. Beattie and P.T. Landsberg, Proc. R. Soc. Lond. A 249, 16–29 (1959).

    Article  CAS  Google Scholar 

  6. M.A. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).

    Article  CAS  Google Scholar 

  7. J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron Devices 48, 1326 (2001).

    Article  CAS  Google Scholar 

  8. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).

    Article  CAS  Google Scholar 

  9. G.L. Hansen, J.N. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  10. M.H. Weiler, Semiconductors and Semimetals, vol. 16, eds. R.K. Willardson and A.C. Beer (Academic, New York, 1981).

  11. R.W. Miles, Properties of Narrow Gap Cadmium-based Compounds, Chap. A6.3, ed. P. Capper (INSPEC, Exeter, 1994), p. 215.

  12. J.G. Simmons and G.W. Taylor, Phys. Rev. B 4, 502 (1971).

    Article  Google Scholar 

  13. Atlas device simulator, Silvaco Inc. http://www.silvaco.com. Accessed September 2012.

  14. J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, J. Electron. Mater. 41, 2928 (2012).

    Article  CAS  Google Scholar 

  15. W.E. Tennant, J. Electron. Mater. 39, 1030 (2010).

    Article  CAS  Google Scholar 

  16. M.A. Kinch, Fundamentals of Infrared Detector Materials (SPIE, Bellingham, 2007).

  17. F. Gemain, I.C. Robin, S. Brochen, M. De Vita, O. Gravrand, and A. Lusson, J. Electron. Mater. 41, 2867 (2012).

    Article  CAS  Google Scholar 

  18. G.M.A Hurkx, D.B.M. Klaassen, M.P.G. Knuvers, and F.G. O’Hara) Electron Devices Meeting, 1989. IEDM’89. Technical Digest), pp. 307–310.

  19. A. Schenk, J. Appl. Phys. 71, 3339 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ferron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferron, A., Rothman, J. & Gravrand, O. Modeling of Dark Current in HgCdTe Infrared Detectors. J. Electron. Mater. 42, 3303–3308 (2013). https://doi.org/10.1007/s11664-013-2733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2733-6

Keywords

Navigation