Skip to main content
Log in

FeS Nanospheres/Fe/Hard Carbon Mesoporous Sheet Nanocomposites from Sulfate Pulping Red Liquor for Cheap Li-ion Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Controllable synthesis of FeS nanoparticles with high electrochemical performance is still a challenge for cheap Li-ion batteries. In this paper, FeS nanospheres/Fe/hard carbon mesoporous sheet (FeSNs-Fe/HCMS) nanocomposites are synthesized by using sulfate pulping red liquor (SPRL) as a multifunctional template. In the nanocomposite, FeS nanospheres (20–50 nm) are homogeneously embedded in Fe/hard carbon mesoporous sheets. The heterogeneous nucleation and confined growth mechanisms of FeS nanospheres are established. The synthesis mechanism and electrochemical reactions of FeSNs-Fe/HCMS nanocomposites are proposed. The influences of the additive amount of sulfate pulping red liquor on the structure and electrochemical performance of FeSNs-Fe/HCMS nanocomposites are investigated. The results of electrochemical investigation show that this nanocomposite anode exhibits a high initial discharge capacity of 1182 mAh g−1 at a current density of 1 A g−1, which is far beyond the theoretical specific capacity of FeS (609 mAh g−1). Even after cycling at 1 A g−1 over 100 cycles, this anode still retains a high discharge specific capacity of 881 mAh g−1. This work not only reduces pollution of sulfate pulping red liquor, but also benefits the utilization of waste, which proves that sulfate pulping red liquor has good application prospects in Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.J. Cao, H.H. Song, B. Cao, J. Ma, X.H. Chen, J.S. Zhou, and Z.K. Ma, J. Power Sources 364, 208 (2017).

    Article  Google Scholar 

  2. X. Yao, Y. Hu, and Z. Su, Chem. Pap. 72, 2465 (2017).

    Article  Google Scholar 

  3. M.R. Sovizi and A.R. Madram, Chem. Pap. 71, 21 (2017).

    Article  Google Scholar 

  4. Y.X. Xu, W.Y. Li, F. Zhang, X.L. Zhang, W.J. Zhang, C.S. Lee, and Y.B. Tang, J. Mater. Chem. A 4, 3697 (2016).

    Article  Google Scholar 

  5. M. Faridi, L. Naji, S. Kazemifard, and N. Pourali, Chem. Pap. 72, 2289 (2018).

    Article  Google Scholar 

  6. J.M. Costa, T.C.M. Nepel, and A.F.A. Neto, Chem. Pap. (2018). https://doi.org/10.1007/s11696-018-0661-x

  7. X.Q. Guo, X.F. Liu, H.L. Yu, Y.C. Lu, Q.C. Liu, and Z.J. Li, J. Electron. Mater. 48, 551 (2019).

    Article  Google Scholar 

  8. M.C. Thirumoolam, A.K. Mamikandan, B. Sivaramakrishnan, H. Kaluvan, and M.R. Gowravaram, J. Electron. Mater. 47, 1952 (2018).

    Article  Google Scholar 

  9. L. Fei, Q.L. Lin, B. Yuan, G. Chen, P. Xie, Y.L. Li, Y. Xu, S.G. Deng, S. Smirnov, and H.M. Luo, ACS Appl. Mater. Interfaces 5, 5330 (2013).

    Article  Google Scholar 

  10. N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X.Y. Hu, X.K. Kong, and Q.W. Chen, J. Phys. Chem. C 116, 7227 (2012).

    Article  Google Scholar 

  11. B. Mordina, R. Kumar, R.K. Tiwari, D.K. Setua, and A. Sharma, J. Phys. Chem. C 121, 7810 (2017).

    Article  Google Scholar 

  12. T.X.H. Le, M. Bechelany, and M. Cretin, Carbon 122, 564 (2017).

    Article  Google Scholar 

  13. X.G. Liu, S.W. Or, C.G. Jin, Y.H. Lv, C. Feng, and Y.P. Sun, Carbon 60, 215 (2013).

    Article  Google Scholar 

  14. S. Nam, S. Kim, S. Wia, H. Choi, S. Byun, S.M. Choi, S.I. Yoo, K.T. Lee, and B. Parka, J. Power Sources 211, 154 (2012).

    Article  Google Scholar 

  15. L. Ghadbeigi, J.K. Harada, B.R. Lettiere, and T.D. Sparks, Energy Environ. Sci. 8, 1640 (2015).

    Article  Google Scholar 

  16. W.Y. Li, Y.B. Tang, W.P. Kang, Z.Y. Zhang, X. Yang, Y. Zhu, W.J. Zhang, and C.S. Lee, Small 11, 1345 (2015).

    Article  Google Scholar 

  17. W.Y. Li, Z.P. Li, W.P. Kang, Y.B. Tang, Z.Y. Zhang, X. Yang, H.T. Hong, and C.S. Lee, J. Mater. Chem. A 2, 12289 (2014).

    Article  Google Scholar 

  18. Q.T. Xu, J.C. Li, H.G. Xue, and S.P. Guo, J. Power Sources 379, 41 (2018)

  19. C.B. Zhu, Y.R. Wen, PAV. Aken, J. Maier, and Y. Yu, Adv. Funct. Mater. 25, 2335 (2015)

  20. S.P. Guo, J.C. Li, J.R. Xiao, and H.G. Xue ACS Appl. Mater. Interfaces 9, 37694 (2017).

    Article  Google Scholar 

  21. X. Wen, X.L. Wei, L.W. Yang, and P.K. Shen, J. Mater. Chem. A 3, 2090 (2015).

    Article  Google Scholar 

  22. H.T. Xue, D.Y.W. Yu, J. Qing, X. Yang, J. Xu, Z.P. Li, M.L. Sun, W.P. Kang, Y.B. Tang, and C.S. Lee, J. Mater. Chem. A 3, 7945 (2015).

    Article  Google Scholar 

  23. B. Wu, H.H. Song, J.S. Zhou, and X.H. Chen, Chem. Commun. 47, 8653 (2011).

    Article  Google Scholar 

  24. C. Xu, Y. Zeng, X.H. Rui, N. Xiao, J.X. Zhu, W.Y. Zhang, J. Chen, W.L. Liu, H.T. Tan, H.H. Hng, and Q.Y. Yan, ACS Nano 6, 4713 (2012).

    Article  Google Scholar 

  25. S.P. Guo, J.C. Li, Z. Ma, Y. Chi, and H.G. Xue, J. Mater. Sci. 52, 2345 (2017).

    Article  Google Scholar 

  26. X. Wei, W.H. Li, J. Shi, L. Gu, and Y. Yu, ACS Appl. Mater. Interfaces 7, 27804 (2015).

    Article  Google Scholar 

  27. X.G. Liu, Y.Y. Wu, X.L. Li, J.Y. Yu, and Y.P. Sun, Ceram. Int. 44, 13654 (2018).

    Article  Google Scholar 

  28. X.L. Yi, W. He, X.D. Zhang, G.H. Yang, and Y.Y. Wang, J. Alloy. Compd. 735, 1306 (2018).

    Article  Google Scholar 

  29. J. Sun, H.W. Lee, M. Pasta, H.T. Yuan, G.Y. Zheng, Y.M. Sun, Y.Z. Li, and Y. Cui, Nat. Nanotechnol. 10, 980 (2015).

    Article  Google Scholar 

  30. W.L. Lu, H.Y. Nan, J.H. Hong, Y.M. Chen, C. Zhu, Z. Liang, X.Y. Ma, Z.H. Ni, C.H. Jin, and Z. Zhang, Nano Res. 7, 853 (2014).

    Article  Google Scholar 

  31. C.L. Wang, Y. Zhang, W. He, X.D. Zhang, G.H. Yang, Z.Y. Wang, M.M. Ren, and L.Z. Wang, Chem. Electro. Chem 5, 129 (2018).

    Article  Google Scholar 

  32. Y. Xiang, Z. Chen, C.M. Chen, T.H. Wang, and M. Zhang, J. Alloy. Compd. 724, 406 (2017).

    Article  Google Scholar 

  33. X.D. Zhang, X.L. Xu, W. He, G.H. Yang, J.X. Shen, J.H. Liu, and Q.Z. Liu, J. Mater. Chem. A 3, 22247 (2015).

    Article  Google Scholar 

  34. Y.X. Ding, X.Y. Sun, L.Y. Zhang, S.J. Mao, Z.L. Xie, Z.W. Liu, and D.S. Su, Angew. Chem. Int. Ed. 54, 231 (2015).

    Article  Google Scholar 

  35. G.C. Huang, T. Chen, Z. Wang, K. Chang, and W.X. Chen, J. Power Sources 235, 122 (2013).

    Article  Google Scholar 

  36. J.Y. Yao, Y.J. Gong, S.B. Yang, P. Xiao, Y.H. Zhang, K. Keyshar, G.L. Ye, S. Ozden, R. Vajtai, and P.M. Ajayan, ACS Appl. Mater. Interfaces 6, 20414 (2014).

    Article  Google Scholar 

  37. H.T. Sun, G.Q, Xin, T. Hu, M.P. Yu, D.L. Shao, X. Sun, and J. Lian, Nat. Commun. 5, 4526 (2014)

  38. S.H. Choi and Y.C. Kang, Nano Res 8, 1595 (2015).

    Article  Google Scholar 

  39. L. Li, C.T. Gao, A. Kovalchuk, Z.W. Peng, G.D. Ruan, Y. Yang, H.L. Fei, Q.F. Zhong, Y.L. Li, and J.M. Tour, Nano Res. 9, 2904 (2016).

    Article  Google Scholar 

  40. J.S. Cho, J.S. Park, and Y.C. Kang, Nano Res. 10, 897 (2017).

    Article  Google Scholar 

  41. J.B. Li, D. Yan, T. Lu, Y.F. Yao, and L.K. Pan, Chem. Eng. J. 325, 14 (2017).

    Article  Google Scholar 

  42. W.J. Yu, C. Liu, L.L. Zhang, P.X. Hou, F. Li, B. Zhang, and H.M. Cheng, Adv. Sci. 3, 1600113 (2016).

    Article  Google Scholar 

  43. S.Y. Lee and Y.C. Kang, Chem. Eur. J. 22, 2769 (2016).

    Article  Google Scholar 

  44. Z.G. Wu, J.T. Li, Y.J. Zhong, J. Liu, K. Wang, X.D. Guo, L. Huang, B.H. Zhong, and S.G. Sun, J. Alloy. Compd. 688, 790 (2016).

    Article  Google Scholar 

  45. C. Li, X. Wang, S.D. Li, Q. Li, J. Xu, X.M. Liu, C.K. Liu, Y.H. Xu, J.Q. Liu, H.L, Li, P.Z. Guo, and X.S. Zhao, Appl. Surf. Sci. 416, 308 (2017)

  46. L. Li, A.R.O. Raji, and J.M. Tour, Adv. Mater. 25, 6298 (2013).

    Article  Google Scholar 

  47. Z.Y. Wang, W. He, X.H. Zhang, Y.Z. Yue, G.H. Yang, X.L. Yi, Y.Y. Wang, and J.C. Wang, Chem. Electro. Chem. 4, 671 (2017).

    Google Scholar 

  48. L. Fei, B.P. Williams, S.H. Yoo, J.M. Carlin, and Y.L. Joo, Chem. Commun. 52, 1501 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks National Natural Science Foundation of China (Grant Nos. 51672139, 51472127 and 51272144) for the financial support. They also thank the Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education for the financial support (No. KF2016-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen He or Xudong Zhang.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, P., He, W., Zhang, X. et al. FeS Nanospheres/Fe/Hard Carbon Mesoporous Sheet Nanocomposites from Sulfate Pulping Red Liquor for Cheap Li-ion Batteries. J. Electron. Mater. 48, 4073–4084 (2019). https://doi.org/10.1007/s11664-019-07178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07178-7

Keywords

Navigation