Skip to main content

Advertisement

Log in

Recycling water hyacinth stem waste for cost-effective production of carbon/FeOx nanocomposite anodes for sustainable fast-charging lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, water hyacinth stem waste was used as a cost-effective and sustainable precursor to synthesize carbon/iron oxide (C/FeOx) nanocomposite anode materials, which were simultaneously produced in one step of catalytic graphitization. The synthesis process was superior in terms of simplicity, scalability, simplicity of required conditions, and environmental friendliness. Intensive physical characterization revealed that the synthesized materials consisted of FeOx nanoparticles and salt contents scattered across the surface of partially graphitized carbon. This was greatly advantageous since carbon would be able to suppress the volume change effect of FeOx. As a result, electrochemical studies discovered that the C/FeOx nanocomposite with the best performance delivered a high reversible capacity of 268.5 mAh g−1 after 300 cycles at 0.1 A g−1 and 171.1 mAh g−1 after 1000 cycles at 2 A g−1. Even after cycling through 5000 cycles at a fast charge stage of 10 A g−1, this material could still function as a great anode. Also, the coulombic efficiency was found to be greater than 90% even after a long-term cycle, which demonstrated outstanding cyclic reversibility and stability achieved without any conductive additives as compared to commercial graphite. Thus, this study sheds light on the adaptive production of nanocomposite anodes from diverse biomass waste, which can be repurposed in the future to develop important sustainable energy storage applications. Also, the results indicate that these C/FeOx nanocomposite materials could be employed as low-cost anode materials in environmentally friendly lithium-ion batteries, even at fast charge–discharge rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data generated or analyzed will be available from the corresponding author upon reasonable request.

References

  1. J.B. Goodenough, Nat. Electron. 1, 204 (2018). https://doi.org/10.1038/s41928-018-0048-6

    Article  Google Scholar 

  2. B. Scrosati, J. Garche, W. Tillmetz, Advances in Battery Technologies for Electric Vehicles (Woodhead Publishing, Cambridge, 2015), pp.4–5

    Google Scholar 

  3. G.E. Blomgren, J. Electrochem. Soc. 164, A5019 (2016). https://doi.org/10.1149/2.0251701jes

    Article  CAS  Google Scholar 

  4. N. Ratsameetammajak, T. Autthawong, T. Chairuangsri, H. Kurata, A.S. Yu, T. Sarakonsri, RSC Adv. 12, 14621 (2022). https://doi.org/10.1039/d2ra00526c

    Article  CAS  Google Scholar 

  5. O. Beyssac, D. Rumble, Elements 10, 415 (2014). https://doi.org/10.2113/gselements.10.6.415

    Article  CAS  Google Scholar 

  6. A. Ōya, H. Marsh, J. Mater. Sci. 17, 309 (1982). https://doi.org/10.1007/BF00591464

    Article  Google Scholar 

  7. E. Thompson, A.E. Danks, L. Bourgeois, Z. Schnepp, Green Chem. 17, 551 (2015). https://doi.org/10.1039/c4gc01673d

    Article  CAS  Google Scholar 

  8. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustain. Energy Fuels 4, 5387 (2020). https://doi.org/10.1039/d0se00175a

    Article  CAS  Google Scholar 

  9. P. Jagdale, J.R. Nair, A. Khan et al., Electrochim. Acta 368, 137644 (2021). https://doi.org/10.1016/j.electacta.2020.137644

    Article  CAS  Google Scholar 

  10. T. Li, X. Bai, Y.-X. Qi, N. Lun, Y.-J. Bai, Electrochim. Acta 222, 1562 (2016). https://doi.org/10.1016/j.electacta.2016.11.140

    Article  CAS  Google Scholar 

  11. R. Boonprachai, T. Autthawong, O. Namsar, C. Yodbunork, W. Yodying, T. Sarakonsri, Crystals 12, 223 (2022). https://doi.org/10.3390/cryst12020223

    Article  CAS  Google Scholar 

  12. T. Autthawong, O. Namsar, A. Yu, T. Sarakonsri, J. Mater. Sci. 31, 9126 (2020). https://doi.org/10.1007/s10854-020-03442-3

    Article  CAS  Google Scholar 

  13. O. Namsar, T. Autthawong, R. Boonprachai, A. Yu, T. Sarakonsri, J. Mater. Sci. 33, 6536 (2022). https://doi.org/10.1007/s10854-022-07828-3

    Article  CAS  Google Scholar 

  14. S.B. Mujib, B. Vessalli, W.A. Bizzo, T. Mazon, G. Singh, Nano Energy 9, 54 (2020). https://doi.org/10.1680/jnaen.19.00040

    Article  Google Scholar 

  15. V. Guna, M. Ilangovan, M.G. Anantha Prasad, N. Reddy, ACS Sustain. Chem. Eng. 5, 4478 (2017). https://doi.org/10.1021/acssuschemeng.7b00051

    Article  CAS  Google Scholar 

  16. W. Su, Q. Sun, M. Xia, Z. Wen, Z. Yao, Resources (2018). https://doi.org/10.3390/resources7030046

    Article  Google Scholar 

  17. X. Yi, W. He, X. Zhang et al., Electrochim. Acta 232, 550 (2017). https://doi.org/10.1016/j.electacta.2017.02.130

    Article  CAS  Google Scholar 

  18. D. Li, K. Wang, H. Tao, X. Hu, S. Cheng, K. Jiang, RSC Adv. 6, 89715 (2016). https://doi.org/10.1039/c6ra19387k

    Article  CAS  Google Scholar 

  19. J.S. Lara-Serrano, O.M. Rutiaga-Quiñones, J. López-Miranda et al., BioResources 11, 7214 (2016)

    Article  CAS  Google Scholar 

  20. S. Sukarni, Y. Zakaria, S. Sumarli, R. Wulandari, A. Ayu Permanasari, M. Suhermanto, IOP Conf. Ser. 515, 012070 (2019). https://doi.org/10.1088/1757-899x/515

    Article  CAS  Google Scholar 

  21. J.L. Gómez-Urbano, G. Moreno-Fernández, M. Arnaiz, J. Ajuria, T. Rojo, D. Carriazo, Carbon 162, 273 (2020). https://doi.org/10.1016/j.carbon.2020.02.052

    Article  CAS  Google Scholar 

  22. A. Gutiérrez-Pardo, J. Ramírez-Rico, R. Cabezas-Rodríguez, J. Martínez-Fernández, J. Power Sources 278, 18 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.030

    Article  CAS  Google Scholar 

  23. M. Gao, P. Zhou, P. Wang et al., J. Alloys Compd. 565, 97 (2013). https://doi.org/10.1016/j.jallcom.2013.03.012

    Article  CAS  Google Scholar 

  24. W.M. Haynes, CRC Handbook of Chemistry and Physics, 97th edn. (CRC Press, New York, 2016), pp.12–216

    Book  Google Scholar 

  25. W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo, L.-J. Wan, Adv. Funct. Mater. 18, 3941 (2008). https://doi.org/10.1002/adfm.200801386

    Article  CAS  Google Scholar 

  26. G. Luo, P.J. Strong, H. Wang, W. Ni, W. Shi, Bioresour. Technol. 102, 6990 (2011). https://doi.org/10.1016/j.biortech.2011.04.048

    Article  CAS  Google Scholar 

  27. R. Subramanya, K.G. Satyanarayana, B. Shetty, J. Nat. Fibers 14, 485 (2017). https://doi.org/10.1080/15440478.2016.1212771

    Article  CAS  Google Scholar 

  28. S. Gu, Y. Liu, G. Zhang, W. Shi, Y. Liu, J. Zhu, RSC Adv. 4, 41179 (2014). https://doi.org/10.1039/C4RA06888B

    Article  CAS  Google Scholar 

  29. C. Ding, Y. Zeng, L. Cao, L. Zhao, Y. Zhang, J. Mater. Chem. A 4, 5898 (2016). https://doi.org/10.1039/c5ta10726a

    Article  CAS  Google Scholar 

  30. J. Wen, Z. Zeng, L. Yang et al., Microsc. Microanal. 23, 2268 (2017). https://doi.org/10.1017/s1431927617012004

    Article  Google Scholar 

  31. Y. Yin, J. Yin, W. Zhang et al., J. Energy Resour. Technol. 140, 1 (2018). https://doi.org/10.1115/1.4039445

    Article  CAS  Google Scholar 

  32. A.K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, H. Fan, G. Wang, Microporous Mesoporous Mater. 246, 72 (2017). https://doi.org/10.1016/j.micromeso.2017.03.019

    Article  CAS  Google Scholar 

  33. K. Persson, V.A. Sethuraman, L.J. Hardwick et al., J. Phys. Chem. Lett. 1, 1176 (2010). https://doi.org/10.1021/jz100188d

    Article  CAS  Google Scholar 

  34. M.S. Kim, D. Bhattacharjya, B. Fang, D.S. Yang, T.S. Bae, J.S. Yu, Langmuir 29, 6754 (2013). https://doi.org/10.1021/la401150t

    Article  CAS  Google Scholar 

  35. B.P. Thapaliya, H. Luo, P. Halstenberg, H.M. Meyer 3rd., J.R. Dunlap, S. Dai, ACS Appl. Mater. Interfaces 13, 4393 (2021). https://doi.org/10.1021/acsami.0c19395

    Article  CAS  Google Scholar 

  36. Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, Prog. Energy Combust. Sci. 73, 95 (2019). https://doi.org/10.1016/j.pecs.2019.03.002

    Article  Google Scholar 

  37. A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, ACS Appl. Energy Mater. 3, 66 (2020). https://doi.org/10.1021/acsaem.9b01965

    Article  CAS  Google Scholar 

  38. K.-H. Chen, M.J. Namkoong, V. Goel et al., J. Power Sources 471, 228475 (2020). https://doi.org/10.1016/j.jpowsour.2020.228475

    Article  CAS  Google Scholar 

  39. Y. Li, C. Li, H. Qi, K. Yu, C. Liang, Chem. Phys. 506, 10 (2018). https://doi.org/10.1016/j.chemphys.2018.03.027

    Article  CAS  Google Scholar 

  40. W. Ding, X. Wu, Y. Li, S. Wang, S. Zhuo, Materials 13, 1 (2020). https://doi.org/10.3390/ma13204611

    Article  CAS  Google Scholar 

  41. T. Autthawong, Y. Chimupala, M. Haruta et al., RSC Adv. 10, 43811 (2020). https://doi.org/10.1039/d0ra07733j

    Article  CAS  Google Scholar 

  42. Y. Liu, X. Li, A.K. Haridas et al., Energies 13, 827 (2020). https://doi.org/10.3390/en13040827

    Article  CAS  Google Scholar 

  43. Y. Huang, X. Li, X. Xu et al., Adv. Powder Technol. 32, 2484 (2021). https://doi.org/10.1016/j.apt.2021.05.013

    Article  CAS  Google Scholar 

  44. J.S. Cho, Y.J. Hong, Y.C. Kang, ACS Nano 9, 4026 (2015). https://doi.org/10.1021/acsnano.5b00088

    Article  CAS  Google Scholar 

  45. C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano 7, 4459 (2013). https://doi.org/10.1021/nn401059h

    Article  CAS  Google Scholar 

  46. M. Chen, J. Liu, D. Chao et al., Nano Energy 9, 364 (2014). https://doi.org/10.1016/j.nanoen.2014.08.011

    Article  CAS  Google Scholar 

  47. T. Zhu, J.S. Chen, X.W. Lou, J. Phys. Chem. C 115, 9814 (2011). https://doi.org/10.1021/jp2013754

    Article  CAS  Google Scholar 

  48. Y. Li, Y. Huang, Y. Zheng, R. Huang, J. Yao, J. Power Sources 416, 62 (2019). https://doi.org/10.1080/15440478.2016.1212771

    Article  CAS  Google Scholar 

  49. W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol. 11, 1 (2020). https://doi.org/10.33961/jecst.2019.00528

    Article  CAS  Google Scholar 

  50. T. Autthawong, C. Yodbunork, N. Ratsameetammajak, O. Namsar, Y. Chimupala, T. Sarakonsri, ACS Appl. Energy Mater. 5, 13839–13842 (2022). https://doi.org/10.1021/acsaem.2c02456

    Article  CAS  Google Scholar 

  51. Q. Lin, J. Wang, Y. Zhong et al., Electrochim. Acta 212, 179 (2016). https://doi.org/10.1016/j.electacta.2016.06.135

    Article  CAS  Google Scholar 

  52. W. Duan, Z. Zhu, H. Li et al., J. Mater. Chem. A 2, 8668 (2014). https://doi.org/10.1039/C4TA00106K

    Article  CAS  Google Scholar 

  53. M. Liu, H. Jin, E. Uchaker et al., Nanotechnology 28, 155603 (2017). https://doi.org/10.1088/1361-6528/aa6143

    Article  CAS  Google Scholar 

  54. S. Chen, Q. Wu, M. Wen et al., ACS Appl. Mater. Interfaces 10, 19656 (2018). https://doi.org/10.1021/acsami.8b02839

    Article  CAS  Google Scholar 

  55. F.J. Soler-Piña, C. Hernández-Rentero, A. Caballero, J. Morales, E. Rodríguez-Castellón, J. Canales-Vázquez, Nano Res. 13, 86 (2020). https://doi.org/10.1007/s12274-019-2576-4

    Article  CAS  Google Scholar 

  56. B. Li, Y. Zhang, J. Xiong et al., J. Mater. Sci. 57, 9939 (2022). https://doi.org/10.1007/s10853-021-06741-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Renewable Energy Laboratory-Advanced Battery Research Unit, Chiang Mai University for sample preparation, battery cell fabrication, and electrochemical measurements. Also, the authors appreciate the characterizations and facility supports by Department of Chemistry, Faculty of Science, Chiang Mai University. Advanced electron microscopy was supported by the Collaborative Research Program of Institute for Chemical Research, Kyoto University [Grant No. 2023-140]. This research project was financially supported by Fundamental Fund 2022, Center of Excellence in Materials Science and Technology under the Administration of Materials Science Research Center of Chiang Mai University, the Postdoctoral Fellowships, Chiang Mai University, and Program Management Unit for Competitiveness (PMU-C), Office of National Higher Education Science Research and Innovation Policy Council.

Funding

No funding, grants, or other forms of support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The original concept was designed by WY. The material synthesis, characterization, and battery measurements were carried out by WY and TA. WY, TA, and ON analyzed data and wrote the original draft manuscript. TK, MH, and HK performed other characterizations. TS supervised the research. WY and TA devised the original concept. WY, TA, ON and TS revised the manuscript. TS and TC were advocates for resources and procured research funding. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Thapanee Sarakonsri.

Ethics declarations

Competing interests

The authors declare that there were no relevant financial or non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 167 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yodying, W., Autthawong, T., Namsar, O. et al. Recycling water hyacinth stem waste for cost-effective production of carbon/FeOx nanocomposite anodes for sustainable fast-charging lithium-ion batteries. J Mater Sci: Mater Electron 34, 1319 (2023). https://doi.org/10.1007/s10854-023-10719-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10719-w

Navigation