Skip to main content

Advertisement

Log in

Pomegranate-like mesoporous double carbon-coated Fe2P nanoparticles as advanced anode materials for sodium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anode materials have limited the development of sodium-ion batteries (SIBs). In this paper, the novel pomegranate-like mesoporous double carbon-coated Fe2P nanoparticles (Fe2P@C@NC), in which Fe2P is confined in the thin carbon shell derived from phytic acid and then wholly embedded into N-doped carbon network, can be applied as anode materials for SIBs. The elaborated structure presents several prominent merits, such as large specific surface area, pore-volume, excellent electronic conductivity network, and buffering volume expansion. All of these endow the structural integrity of Fe2P@C@NC material with excellent performance during charge–discharge cycles and guarantee speedy electrode reaction kinetics. As SIBs anode, Fe2P@C@NC material delivers an excellent reversible specific capacity of 408 mAh g−1 with almost no decay after the 100th cycles. And it also features excellent rate capability and splendid durability (attenuation rate of 0.05% per cycle with 1000th cycles) at high current density. These results confirm that the unique self-confined growth strategy has a great practical value in synthesizing advanced materials for next-generation energy storage systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  2. Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3:18013

    Article  Google Scholar 

  3. Zhou Y, Zhang M, Wang Q et al (2020) Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res 13:691–700. https://doi.org/10.1007/s12274-020-2677-0

    Article  CAS  Google Scholar 

  4. Jiang F, Liu Y, Wang Q, Zhou Y (2018) Hierarchical Fe3O4@NC composites: ultra-long cycle life anode materials for lithium ion batteries. J Mater Sci 53:2127–2136. https://doi.org/10.1007/s10853-017-1651-z

    Article  CAS  Google Scholar 

  5. Yang L, Luo S-h, Wang Y et al (2021) Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chem Eng J 404:126578. https://doi.org/10.1016/j.cej.2020.126578

    Article  CAS  Google Scholar 

  6. Feng J, Luo S-h, Yan S-x et al (2021) Hierarchically nitrogen-doped carbon wrapped Ni0.6Fe0.4Se2 binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes. J Mater Chem A 9:1610–1622. https://doi.org/10.1039/D0TA08423A

    Article  CAS  Google Scholar 

  7. Liu W, Zhi H, Yu X (2019) Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Mater 16:290–322. https://doi.org/10.1016/j.ensm.2018.05.020

    Article  Google Scholar 

  8. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew Chem Int Edit 57:102–120. https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  9. Tan H, Chen D, Rui X, Yu Y (2019) Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv Func Mater 29:1808745. https://doi.org/10.1002/adfm.201808745

    Article  CAS  Google Scholar 

  10. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv Energy Mater 2:710–721. https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  11. Jiang F, Wang Q, Du R, Yan X, Zhou Y (2018) Fe7S8 nanoparticles attached carbon networks as anode materials for both lithium and sodium ion batteries. Chem Phys Lett 706:273–279. https://doi.org/10.1016/j.cplett.2018.06.023

    Article  CAS  Google Scholar 

  12. Bao S, Luo S-h, Wang Z-y, Yan S-x, Wang Q (2019) Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content. J Colloid Interface Sci 544:164–171. https://doi.org/10.1016/j.jcis.2019.02.094

    Article  CAS  Google Scholar 

  13. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX (2017) Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries. Adv Mater 29:1700622. https://doi.org/10.1002/adma.201700622

    Article  CAS  Google Scholar 

  14. Shi S, Sun C, Yin X et al (2020) FeP Quantum Dots Confined in Carbon-Nanotube-Grafted P-Doped Carbon Octahedra for High-Rate Sodium Storage and Full-Cell Applications. Adv Func Mater 30:1909283. https://doi.org/10.1002/adfm.201909283

    Article  CAS  Google Scholar 

  15. Ge X, Li Z, Yin L (2017) Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32:117–124. https://doi.org/10.1016/j.nanoen.2016.11.055

    Article  CAS  Google Scholar 

  16. Wang YJ, Bian JL, Ren WN, Cheng CW (2021) Hollow CoP nanoparticles embedded in carbon nanotube arrays as sodium ion battery anode with superior performance. Mater Res Bull 139:111248. https://doi.org/10.1016/j.materresbull.2021.111248

    Article  CAS  Google Scholar 

  17. Hu Z, Liu Q, Lai W et al (2020) Manipulating molecular structure and morphology to invoke high-performance sodium storage of copper phosphide. Adv Energy Mater 10:1903542. https://doi.org/10.1002/aenm.201903542

    Article  CAS  Google Scholar 

  18. Liu J, Wang S, Kravchyk K et al (2018) SnP nanocrystals as anode materials for Na-ion batteries dagger. J Mater Chem A 6:10958–10966. https://doi.org/10.1039/c8ta01492b

    Article  CAS  Google Scholar 

  19. Yang Y, Fu W, Lee DC et al (2020) Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries. Mater Today Energy 16:100410. https://doi.org/10.1016/j.mtener.2020.100410

    Article  Google Scholar 

  20. Zhao Z, Pathak R, Wang X, Yang Z, Li H, Qiao Q (2020) Sulfiphilic FeP/rGO as a highly efficient sulfur host for propelling redox kinetics toward stable lithium-sulfur battery. Electrochim. Acta 364:137117. https://doi.org/10.1016/j.electacta.2020.137117

    Article  CAS  Google Scholar 

  21. Wang Y, Lim YV, Huang S et al (2020) Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. Nanoscale 12:4341–4351. https://doi.org/10.1039/c9nr09278a

    Article  CAS  Google Scholar 

  22. Xu P, Dai K, Yang C et al (2020) Efficient synthesis of Cu3P nanoparticles confined in 3D nitrogen-doped carbon networks as high performance anode for lithium/sodium-ion batteries. J Alloy Compd 849:156436. https://doi.org/10.1016/j.jallcom.2020.156436

    Article  CAS  Google Scholar 

  23. Xu X, Feng J, Liu J et al (2019) Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim Acta 312:224–233. https://doi.org/10.1016/j.electacta.2019.04.149

    Article  CAS  Google Scholar 

  24. Kim Y, Hwang H, Yoon CS, Kim MG, Cho J (2007) Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles: an anode material for lithium-ion batteries. Adv Mater 19:92–96. https://doi.org/10.1002/adma.200600644

    Article  CAS  Google Scholar 

  25. Liu Q, Hu Z, Liang Y et al (2020) Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem Int Edit 59:5159–5164. https://doi.org/10.1002/anie.201913683

    Article  CAS  Google Scholar 

  26. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Edit 53:5427–5430. https://doi.org/10.1002/anie.201402646

    Article  CAS  Google Scholar 

  27. Wang Y, Wu C, Wu Z et al (2018) FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. Chem Commun 54:9341–9344. https://doi.org/10.1039/c8cc03827a

    Article  CAS  Google Scholar 

  28. Gao X, Zhao C, Lu H, Gao F, Ma H (2014) Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions. Electrochim Acta 150:188–196. https://doi.org/10.1016/j.electacta.2014.09.160

    Article  CAS  Google Scholar 

  29. Zhang G, Wang G, Liu Y, Liu H, Qu J, Li J (2016) Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J Am Chem Soc 138:14686–14693. https://doi.org/10.1021/jacs.6b08491

    Article  CAS  Google Scholar 

  30. Bao S, Luo S-h, Yan S-x et al (2019) Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage. Electrochim Acta 307:293–301. https://doi.org/10.1016/j.electacta.2019.03.216

    Article  CAS  Google Scholar 

  31. Liu J, Hou W, Xiao Z et al (2019) Iron fumarate as large-capacity and long-life anode material for Li-ion battery boosted by conductive Fe2P decorating. J Alloy Compd 809:151826. https://doi.org/10.1016/j.jallcom.2019.151826

    Article  CAS  Google Scholar 

  32. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  33. Li Z, Zhao H, Du Z, Zhao L, Wang J, Zhang Z (2020) Iron phosphide@N-doped carbon nanosheets with open-framework structure as an ultralong lifespan and outstanding rate performance electrode material for sodium-ion batteries. J Power Sources 465:228253. https://doi.org/10.1016/j.jpowsour.2020.228253

    Article  CAS  Google Scholar 

  34. Xia G, Zheng Z, Ye J, Li X, Biggs MJ, Hu C (2021) Carbon microspheres with embedded FeP nanoparticles as a cathode electrocatalyst in Li-S batteries. Chem Eng J 406:126823. https://doi.org/10.1016/j.cej.2020.126823

    Article  CAS  Google Scholar 

  35. Li X, Wang X, Yang W et al (2019) Three-dimensional hierarchical flowerlike FeP wrapped with N-doped carbon possessing improved Li(+) diffusion kinetics and cyclability for lithium-ion batteries. ACS Appl Mater Interfaces 11:39961–39969. https://doi.org/10.1021/acsami.9b13330

    Article  CAS  Google Scholar 

  36. Zhang X, Ou-Yang W, Zhu G, Lu T, Pan L (2019) Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability and long-life cycling performance. Carbon 143:116–124. https://doi.org/10.1016/j.carbon.2018.11.005

    Article  CAS  Google Scholar 

  37. Zhang M, Yu J, Ying T, Yu J, Sun Y, Liu X (2019) P doped onion-like carbon layers coated FeP nanoparticles for anode materials in lithium ion batteries. J Alloy Compd 777:860–865. https://doi.org/10.1016/j.jallcom.2018.11.060

    Article  CAS  Google Scholar 

  38. Li Z, Zhang L, Ge X et al (2017) Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 32:494–502. https://doi.org/10.1016/j.nanoen.2017.01.009

    Article  CAS  Google Scholar 

  39. Shi S, Li Z, Shen L et al (2020) Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability. Energy Storage Mater 29:78–83. https://doi.org/10.1016/j.ensm.2020.03.029

    Article  Google Scholar 

  40. Xu X, Liu J, Liu Z et al (2018) FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance li-ion batteries. Small 14:e1800793. https://doi.org/10.1002/smll.201800793

    Article  CAS  Google Scholar 

  41. Simon P, Gogotsi Y, Dunn B (2014) Materials science. Where do batteries end and supercapacitors begin? Science 343:1210–1211. https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  42. Wang L, Zhao X, Dai S, Shen Y, Wang M (2019) High-rate and stable iron phosphide nanorods anode for sodium-ion battery. Electrochim Acta 314:142–150. https://doi.org/10.1016/j.electacta.2019.05.071

    Article  CAS  Google Scholar 

  43. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597. https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  44. Augustyn V, Come J, Lowe MA et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522. https://doi.org/10.1038/nmat3601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China supported this work (51802128), the Science and Technology Project of Xuzhou (KC21005), The natural science research project of Jiangsu University (21KJA430003), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_2352), Project (2020-KF-20) supported by the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, China, and College Students’ Innovation and Entrepreneurship Project (202110320029Z).

Author information

Authors and Affiliations

Authors

Contributions

ZW contributed to the experiments and writing-original draft. YW helped in the experiments and data analysis. ZL was involved in the formal analysis. YL helped in writing-review. QL contributed to the physical characterization-XRD, SEM, and TEM. XL contributed to the physical characterization-Raman, BET, XPS. Xin Ma helped in writing-review. SY was involved in the supervision and writing editing. XY contributed to the experimental design, writing-review, and supervision.

Corresponding authors

Correspondence to Shun Yang or Xiao Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, Y., Liu, Z. et al. Pomegranate-like mesoporous double carbon-coated Fe2P nanoparticles as advanced anode materials for sodium-ion batteries. J Mater Sci 57, 9389–9402 (2022). https://doi.org/10.1007/s10853-022-07257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07257-x

Navigation