Skip to main content
Log in

A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ferrous sulfide (FeS) particles dispersed in the pores of carbon (FeS/PC) from the polyacrylonitrile carbonization were prepared via a facile one-pot solid-state method, which was extensively characterized by XRD, SEM, TEM, Raman spectrum, and XPS techniques. As an anode material for lithium-ion batteries, this FeS/PC composite can achieve a high initial discharge capacity of 1428.8 mAh/g at 0.1 C, and can maintain 624.9 mAh/g capacity after 150 cycles. The porous carbon accommodates the volume change during the cycling, and the special structure of the FeS/PC composite results in its advanced electrochemical performance by enhancing the structure stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rui XH, Tan HT, Yan QY (2014) Nanostructured metal sulfides for energy storage. Nanoscale 17:9889–9924

    Article  Google Scholar 

  2. Liu X, Zhang K, Lei KX, Li FJ, Tao ZL, Chen J (2016) Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res 9:198–206

    Article  Google Scholar 

  3. Evans T, Piper DM, Kim SC, Han SS, Bhat V, Oh KH, Lee SH (2014) Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv Mater 26:7386–7392

    Article  Google Scholar 

  4. Douglas A, Carter R, Oakes L, Share K, Cohn AP, Pint CL (2015) Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 9:11156–11165

    Article  Google Scholar 

  5. Liu J, Wen Y, Wang Y, Aken PAV, Maier J, Yu Y (2014) Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv Mater 26:6025–6030

    Article  Google Scholar 

  6. Wu QH, Chen M, Chen KY, Wang SS, Wang CJ, Diao GW (2016) Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors. J Mater Sci 51:1572–1580. doi:10.1007/s10853-015-9480-4

    Article  Google Scholar 

  7. Zeng ZY, Zhang XW, Bustillo K, Niu KY, Gammer C, Xu J, Zheng HM (2015) In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett 15:5214–5220

    Article  Google Scholar 

  8. Xiong FY, Cai ZY, Qu LB, Zhang PF, Yuan ZF, Asare OK, Xu WW, Lin C, Mai LQ (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater 7:12625–12630

    Article  Google Scholar 

  9. Tarascon JM, Armand M (2001) Alternative energy technologies. Nature 414:359–367

    Article  Google Scholar 

  10. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  11. Vogt LO, Kazzi ME, Berg EJT, Villar SP, Novák P, Villevieille C (2015) Understanding the interaction of the carbonates and binder in Na-ion batteries: a combined bulk and surface study. Chem Mater 27:1210–1216

    Article  Google Scholar 

  12. Kim SW, Seo DH, Ma XH, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  Google Scholar 

  13. Palomares V, Cabanas MC, Martínez EC, Han MH, Rojo T (2013) Update on Na-based battery materials. A growing research path. Energy Environ Sci 6:2312–2337

    Article  Google Scholar 

  14. Wang L, Lu YH, Liu J, Xu MW, Cheng JG, Zhang DW, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed 52:1964–1967

    Article  Google Scholar 

  15. Slater MD, Kim DH, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  16. Fei F, Jiang YF, Xu Y, Chen G, Li YL, Xu X, Deng SG, Luo HM (2014) A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance. J Power Sources 265:1–5

    Article  Google Scholar 

  17. Xie J, Liu SY, Cao GS, Zhu TJ, Zhao XB (2013) Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy 2:49–56

    Article  Google Scholar 

  18. Choi SH, Ko YN, Lee JK, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788

    Article  Google Scholar 

  19. Zhu CB, Wen YR, Aken PAV, Maier J, Yu Y (2015) High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv Funct Mater 25:2335–2342

    Article  Google Scholar 

  20. Chen M, Shen X, Wu QH, Li W, Diao GW (2015) Template-assisted synthesis of core–shell α-Fe2O3@TiO2 nanorods and their photocatalytic property. J Mater Sci 50:4083–4094. doi:10.1007/s10853-015-8964-6

    Article  Google Scholar 

  21. Wang XF, Xiang QY, Liu B, Wang LJ, Luo T, Chen D, Shen GZ (2013) TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci Rep 3:2007

    Article  Google Scholar 

  22. Liao F, S’wiatowska J, Maurice V, Seyeux A, Klein LH, Zanna S, Marcus P (2013) Electrochemical lithiation and passivation mechanisms of iron monosulfide thin film as negative electrode material for lithium-ion batteries studied by surface analytical techniques. Appl Surf Sci 283:888–899

    Article  Google Scholar 

  23. Zhu CB, Wen YR, Yu Y (2015) High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv Funct Mater 25:2335–2342

    Article  Google Scholar 

  24. Xing CC, Zhang D, Cao K, Zhao SM, Wang X, Qin HY, Liu JB, Jiang YZ, Meng L (2015) In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem A 3:8742–8749

    Article  Google Scholar 

  25. Fei L, Williams BP, Yoo SH, Carlin JM, Joo YL (2016) A general approach to fabricate free-standing metal sulfide@carbon nanofiber networks as lithium ion battery anodes. Chem Commun 52:1501–1504

    Article  Google Scholar 

  26. Fei L, Lin QL, Yuan B, Chen G, Xie P, Li YL, Xu Y, Deng SD, Smirnov S, Luo HM (2013) Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl Mater 5:5330–5335

    Article  Google Scholar 

  27. Guo SP, Li CX, Chi Y, Ma Z, Xue HG (2016) Novel 3-D network SeS x /NCPAN composites prepared by one-pot in situ solid-state method and its electrochemical performance as cathode material for lithium-ion battery. J Alloys Compd 664:92–98

    Article  Google Scholar 

  28. Guo SP, Guo GC (2014) Crystal structure and magnetic and photocatalytic properties of a new ternary rare-earth mixed chalcogenide, Dy4S4Te3. J Mater Chem A 2:20621–20628

    Article  Google Scholar 

  29. Guo SP, Wang GE, Zhang MJ, Wu MF, Liu GN, Jiang XM, Guo GC, Huang JS (2013) Novel single-crystal’s voltage-dependent effect and magnetic order of Ln2ZrQ5 (Ln = La, Sm, Gd; Q = S, Se) semiconductors. Dalton Trans 42:2679–2682

    Article  Google Scholar 

  30. Guo SP, Chi Y, Xue HG (2015) Sm3S3BO3: the first sulfide borate without S–O and B–S bonds. Inorg Chem 54:11052–11054

    Article  Google Scholar 

  31. Guo SP, Guo GC, Wang MS, Zhou JP, Xu G, Wang GJ, Long XF, Huang JS (2009) A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3 (SiyAl1-y) S7, and Al0. 33Sm3SiS7. Inorg Chem 48:7059–7065

    Article  Google Scholar 

  32. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  Google Scholar 

  33. Xu C, Zeng Y, Rui XH, Xiao N, Zhu JX, Zhang WY, Chen J, Liu WL, Tan HT, Hng HH, Yan QY (2012) Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 6:4713–4721

    Article  Google Scholar 

  34. Pang SP, Tsao HN, Feng XL, Müllen K (2009) Patterned graphene electrodes from solution-processed graphite oxide films for organic field–effect transistors. Adv Mater 21:3488–3491

    Article  Google Scholar 

  35. Yang B, Malkhandi S, Manohar AK, Prakash GKS, Narayanan SR (2014) Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage. Energy Environ Sci 7:2753–2763

    Article  Google Scholar 

  36. Choi SH, Kang YC (2015) Aerosol-assisted rapid synthesis of SnS–C composite microspheres as anode material for Na-ion batteries. Nano Res 8:1595–1603

    Article  Google Scholar 

  37. Zhou F, Xin S, Liang HW, Song LT, Yu SH (2014) Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew Chem Int Ed 53:11552–11556

    Article  Google Scholar 

  38. Ha DH, Ly T, Caron JM, Zhang HT, Fritz KE, Robinson RD (2015) A general method for high-performance Li-ion battery electrodes from colloidal nanoparticles without the introduction of binders or conductive-carbon additives: the cases of MnS, Cu2−x S, and Ge. ACS Appl Mater 7:25053–25060

    Article  Google Scholar 

  39. Zhao L, Yu XQ, Yu JZ, Zhou YG, Ehrlich SN, Hu YS, Su D, Li H, Yang XQ, Chen LQ (2014) Remarkably improved electrode performance of bulk MnS by forming a solid solution with FeS-understanding the Li storage mechanism. Adv Funct Mater 24:5557–5566

    Article  Google Scholar 

  40. Guan ES, Li F, Li J, Chang ZR, Li QM, Yuan XZ, Wang HJ (2015) FeS/C composite as high-performance anode material for alkaline nickel-iron rechargeable batteries. J Power Sources 291:29–39

    Article  Google Scholar 

  41. Wei X, Li WH, Shi JA, Gu L, Yu Y (2015) FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl Mater 7:27804–27809

    Article  Google Scholar 

  42. Liao F, S’wiatowska J, Maurice V, Seyeux A, Klein LH, Zanna S, Marcus P (2015) The influence of the electrolyte on chemical and morphological modifications of an iron sulfide thin film negative electrode. Phys Chem Chem Phys 17:619–629

    Article  Google Scholar 

  43. Xu YX, Li WY, Zhang F, Zhang XL, Zhang WJ, Lee CS, Tang YB (2016) In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium ion batteries. J Mater Chem A 4:3697–3703

    Article  Google Scholar 

  44. Ma Y, Asfaw HD, Edström K (2015) A general method to fabricate free-standing electrodes: sulfonate directed synthesis and their Li+ storage properties. Chem Mater 27:3957–3965

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by National Natural Science Foundation of China (Grant No. 21673203), the Higher Education Science Foundation of Jiangsu Province (No. 15KJB150031), State Key Laboratory of Structural Chemistry Fund (No. 20150009), Natural Science Foundation of Yangzhou (No. YZ 2016122), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Qing Lan Project. We would also like to acknowledge the technical support received from the Testing Center of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Ping Guo or Huai-Guo Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, SP., Li, JC., Ma, Z. et al. A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries. J Mater Sci 52, 2345–2355 (2017). https://doi.org/10.1007/s10853-016-0527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0527-y

Keywords

Navigation