Skip to main content
Log in

Crystal Structure Variations of Sn Nanoparticles upon Heating

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Structural changes in Sn nanoparticles during heating below the melting point have been investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD) analysis, electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). DSC revealed that the heat required to melt the nanoparticles (28.43 J/g) was about half compared with Sn metal (52.80 J/g), which was attributed to the large surface energy contribution for the nanoparticles. ED and XRD analyses of the Sn nanoparticles revealed increased intensity for crystal planes having large interplaner distances compared with regular crystal planes with increasing heat treatment temperature (HTT). HRTEM revealed an increase in interlayer spacing at the surface and near joints between nanoparticles with the HTT, leading to an amorphous structure of nanoparticles at the surface at 220°C. These results highlight the changes that occur in the morphology and crystal structure of Sn nanoparticles at the surface and in the interior with increase of the heat treatment temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sun and Y. Xia, Science 298, 2176 (2002).

    Article  Google Scholar 

  2. Y. Zhao, Z. Zhang, and H. Dang, Mater. Sci. Eng. A 359, 405 (2003).

    Article  Google Scholar 

  3. J.E. Depero, E. Bontempi, L. Sangaletti, and S. Pagliara, J. Chem. Phys. 118, 1400 (2003).

    Article  Google Scholar 

  4. P. Song and D. Wen, J. Phys. Chem. C 113, 13470 (2009).

    Article  Google Scholar 

  5. H. Jiang, K.S. Moon, H. Dong, F. Hua, and C.P. Wong, Chem. Phys. Lett. 429, 492 (2006).

    Article  Google Scholar 

  6. R. Kumar, N. Kushwaha, and J. Mittal, Sens. Lett. 14, 300 (2006).

    Article  Google Scholar 

  7. J.W. Wang, X.H. Liu, S.X. Mao, and J.Y. Huang, Nano Lett. 12, 5897 (2012).

    Article  Google Scholar 

  8. J. Mittal and K.L. Lin, Mater. Charact. 109, 19 (2015).

    Article  Google Scholar 

  9. K.S. Moon, H. Dong, R. Maric, S. Pouthukuchi, A. Hunt, Y. Li, and C.P. Wong, J. Electron. Mater. 34, 168 (2005).

    Article  Google Scholar 

  10. S. Badar, W. Gust, and H. Hieber, Acta Metall. Mater. 43, 329 (1995).

    Google Scholar 

  11. H. Jiang, K.S. Moon, F. Hua, and C.P. Wong, Chem. Mater. 19, 4482 (2007).

    Article  Google Scholar 

  12. P. Song and D. Wen, J. Phys. Chem. C 113, 13470 (2009).

    Article  Google Scholar 

  13. E. Wernicki, E. Fratto, Y. Shu, F. Gao, and Z. Gu, in IEEE Electronic Component and Manufacturing Technology Conference, 12031208, Las Vegas, May 31–June 3, 2016.

  14. J. Mittal and K.L. Lin, J. Electron. Mater. 46, 602 (2017).

    Article  Google Scholar 

  15. R.G. Wolfson, M.E. Fine, and A.W. Ewald, J. Appl. Phys. 31, 1973 (1960).

    Article  Google Scholar 

  16. W.J. Plumbridge, J. Mater. Sci.: Mater. Electron. 18, 307 (2007).

    Google Scholar 

  17. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, and L.H. Allen, Phys. Rev. Lett. 77, 99 (1996).

    Article  Google Scholar 

  18. Z. Li, X. Tao, Y. Cheng, Z. Wu, Z. Zhang, and H. Dang, Ultrason. Sonochem. 14, 89 (2007).

    Article  Google Scholar 

  19. M. Jarosz, K. Syrek, J.K. Kołodziej, J. Mech, K. Małek, K. Hnida, T. łojewski, M. Jaskuła, and G.D. Sulka, J. Phys. Chem. C 119, 24182 (2015).

    Article  Google Scholar 

  20. V.T. Deshpande and D.B. Sirdeshmukh, Acta Crystallogr. 14, 355–356 (1961).

    Article  Google Scholar 

  21. L.E. Depero, E. Bontempi, L. Sangaletti, and S. Pagliara, J. Chem. Phys. 118, 1400 (2003).

    Article  Google Scholar 

  22. R.B. Ross, Metallic Material Specifications Handbook, Vol. 588 (Berlin: Springer, 1992).

    Book  Google Scholar 

  23. K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, and S. Stappert, Phys. Rev. Lett. 99, 1060102 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Lung Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, J., Lin, KL. Crystal Structure Variations of Sn Nanoparticles upon Heating. J. Electron. Mater. 47, 2394–2401 (2018). https://doi.org/10.1007/s11664-018-6063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6063-6

Keywords

Navigation