Skip to main content

Advertisement

Log in

Efficiency of a Sandwiched Thermoelectric Material with a Graded Interlayer and Temperature-Dependent Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper investigates the energy conversion efficiency for a sandwiched thermoelectric (TE) material with a graded interlayer and temperature-dependent properties. The graded interlayer can be modeled as a composite of the two homogeneous end material members to achieve continuously varying composition and properties, thus eliminating the electrical contact resistance at the interfaces of segmented TE materials. The temperature distribution and efficiency are obtained by a semianalytical recurrence relation and a simple iteration technique. In the numerical examples, we consider a sandwiched TE element consisting of nanostructured Bi2Te3 at the cold-end side, nanostructured PbTe at the hot-end side, and a graded interlayer of Bi2Te3–PbTe composite. The numerical results show that the peak efficiency of the sandwiched TE material with no contact resistance is higher than that of segmented Bi2Te3/PbTe with contact resistance at the sharp interface between Bi2Te3 and PbTe. The peak efficiency of the sandwiched material is also influenced by the location of and gradation profile in the graded interlayer. Finally, it is found that temperature dependence of properties decreases the efficiencies of Bi2Te3 and PbTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. El-Genk and H.H. Saber, Thermoelectrics Handbook: Macro to Nano, ed. D.W. Rowe (New York: Taylor & Francis, 2006), Chapter 43.

  2. L. Anatychuk, L.N. Vikhor, L.T. Strutynska, and I.S. Termena, J. Electron. Mater. 40, 957 (2011).

    Article  Google Scholar 

  3. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Mater. Sci. 37, 2893 (2002).

    Article  Google Scholar 

  4. E. Muller, C. Drasar, J. Schilz, and W.A. Kaysser, Mater. Sci. Eng. A 362, 17 (2003).

    Article  Google Scholar 

  5. V.L. Kuznetsov, Thermoelectrics Handbook: Macro to Nano, ed. D.W. Rowe (New York: Taylor & Francis, 2006), Chapter 38.

  6. E. Mueller, K. Zabrocki, C. Goupil, G.J. Snyder, and W. Seifert, Thermoelectrics and Its Energy Harvesting, Vol. 1, ed. D.M. Rowe (New York: Taylor & Francis, 2012).

  7. L.I. Anatychuk and L.N. Vikhor, Thermoelectricity Vol 4: Functionally Graded Thermoelectric Materials (Chernivtsi: Bukrek, 2012).

  8. G.D. Mahan, J. Appl. Phys. 70, 4551 (1991).

    Article  Google Scholar 

  9. K. Zabrocki, E. Muller, and W. Seifert, J. Electron. Mater. 39, 1724 (2010).

    Article  Google Scholar 

  10. Z.-H. Jin and T.T. Wallace, J. Electron. Mater. 44, 1444 (2015).

    Article  Google Scholar 

  11. G.J. Snyder, Thermoelectrics Handbook: Macro to Nano, ed. D.W. Rowe (New York: Taylor & Francis, 2006), Chapter 9.

  12. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  13. Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S. Li, M. Toprak, and M. Muhammed, J. Appl. Phys. 101, 043707 (2007).

    Article  Google Scholar 

  14. J.R. Sootsman, J. He, V.P. Dravid, C.P. Li, C. Uher, and M.G. Kanatzidis, J. Appl. Phys. 105, 083718 (2009).

    Article  Google Scholar 

  15. S. Butt, W. Xu, M.U. Farooq, G.K. Ren, F. Mohmed, Y. Lin, and C.W. Nan, J. Am. Ceram. Soc. 98, 1230 (2015).

    Article  Google Scholar 

  16. E.H. Kerner, Proc. Phys. Soc. B 69, 802 (1956).

    Article  Google Scholar 

  17. Z. Hashin and S. Strikman, J. Appl. Phys. 33, 3125 (1962).

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper is supported by NASA EPSCoR through the Maine Space Grant Consortium and the US DOT UTC Grant DTRT13-G-UTC43 under the METEL lab of Maine Maritime Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, T.T., Jin, ZH. & Su, J. Efficiency of a Sandwiched Thermoelectric Material with a Graded Interlayer and Temperature-Dependent Properties. J. Electron. Mater. 45, 2142–2149 (2016). https://doi.org/10.1007/s11664-016-4358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4358-z

Keywords

Navigation