Skip to main content

Advertisement

Log in

Power Series Iterative Approximation Solution to the Temperature Field in Thermoelectric Generators Made of a Functionally Graded Temperature-Dependent Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To investigate the temperature field in and thermoelectric (TE) efficiency of TE generators made of a functionally graded temperature-dependent material, a power series iteration method is proposed for solving the weak nonlinear differential equation with variable coefficients. A homogeneous structure made of regular Bi2Te3 and a gradient structure composed of regular Bi2Te3 and nano-Bi2Te3 are investigated. The power series iteration solution of the temperature field has good convergence and high accuracy. After four iterations, the relative error of the solution can be less than 10−6. The numerical results obtained show that the maximum energy efficiency of a functionally graded structure composed of regular Bi2Te3 and nano-Bi2Te3 is larger than that of a homogeneous regular Bi2Te3 structure. To reveal that the maximum energy efficiency depends on the gradient distribution, we compare the maximum energy efficiency of TE generators made of nano-Bi2Te3, nano-PbTe, and different types of functionally graded structures made of these two materials. Results indicate that the maximum energy efficiency of certain functionally graded structures is 9.9%. The effective gradient distribution can significantly enhance the maximum TE efficiency. The method and results provide theoretical guidance for the optimization of temperature-dependent materials for TE generators using functionally graded structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Recent development and application of thermoelectric generator and cooler. Appl. Energy 143, 1 (2015).

    Google Scholar 

  2. Y. Ammar, S. Joyce, R. Norman, Y. Wang, and A.P. Roskilly, Low grade thermal energy sources and uses from the process industry in the UK. Appl. Energy 89, 3 (2012).

    Google Scholar 

  3. A. Agbossou, Q. Zhang, G. Sebald, and D. Guyomar, Solar micro-energy harvesting based on thermoelectric and latent heat effects Part I: theoretical analysis. Sens. Actuators A Phys. 163, 277 (2010).

    CAS  Google Scholar 

  4. R. Bjork and K.K. Nielsen, The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system. Sol. Energy 120, 187 (2015).

    Google Scholar 

  5. A. Date, A. Date, C. Dixon, and A. Akbarzadeh, Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy. Sol. Energy 105, 656 (2014).

    Google Scholar 

  6. J. Grandidier, B.J. Nesmith, T.J. Hendricks, M.B. Petach, E.L. David. Full spectrum hybrid photovoltaics and thermal engine utilizing high concentration solar energy, in IEEE 43rd Photovoltaic Specialists Conference (PVSC) (2016).

  7. P. Bermel, K. Yazawa, J.L. Gray, X. Xu, and A. Shakouri, Hybrid strategies and technologies for full spectrum solar conversion. Energy Environ. Sci. 9, 2776 (2016).

    CAS  Google Scholar 

  8. J.L. Wang, J.Y. Wu, and C.Y. Zheng, Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator. Energy Convers. Manag. 86, 992 (2014).

    Google Scholar 

  9. S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery. Appl. Energy 138, 276 (2015).

    Google Scholar 

  10. T.Y. Kim, A.A. Negash, and G. Cho, Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manag. 124, 280 (2016).

    CAS  Google Scholar 

  11. T.J. Hendricks, N.K. Karri, Design impacts of stochastically-varying input parameters on advanced thermoelectric conversion systems, in 26th International Conference on Thermoelectrics (2007).

  12. M. Hyland, H. Hunter, J. Liu, E. Veety, and D. Vashaee, Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 182, 518 (2016).

    Google Scholar 

  13. J.Y. Oh, J.H. Lee, S.W. Han, and S. Chae, Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 9, 1696 (2016).

    CAS  Google Scholar 

  14. A.R.M. Siddique, S. Mahmud, and B.V. Heyst, A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustain. Energy Rev. 73, 730 (2017).

    Google Scholar 

  15. K. Yazawa, A. Shakouri, and T.J. Hendricks, Thermoelectric heat recovery from glass melt processes. Energy 118, 1035 (2017).

    CAS  Google Scholar 

  16. D. Kong, K.W. Jung, S. Jung, D. Jung, J. Schaadt, M. Lyengar, C. Malone, C.R. Kharangate, M. Asheghi, K.E. Goodson, and H. Lee, Single-phase thermal and hydraulic performance of embedded silicon micro-pin fin heat sinks using R245fa. Int. J. Heat Mass Transf. 141, 145 (2009).

    Google Scholar 

  17. R.L. Xu, M.M. Rojo, S.M. Lslam, A. Sood, B. Vareskic, A. Katre, N. Mingo, K.E. Goodson, H.G. Xing, D. Jena, and E. Pop, Thermal conductivity of crystalline AIN and the influence of atomic-scale defects. J. Appl. Phys. 126, 185105 (2019).

    Google Scholar 

  18. E. Suhir and A. Shakouri, Assembly bonded at the ends: could thinner and longer legs result in a lower thermal stress in a thermoelectric module design? J. Appl. Mech. 79, 061010 (2012).

    Google Scholar 

  19. A. Muto, D. Kraemer, Q. Hao, Z.F. Ren, and G. Chen, Thermoelectric properties and efficiency measurements under large temperature differences. Rev. Sci. Instrum. 80, 093901 (2009).

    CAS  Google Scholar 

  20. T.J. Hendricks and N.K. Karri, Micro-and Nano-technology: a critical design key in advanced thermoelectric cooling systems. J. Electr. Mater. 38, 1257 (2009).

    CAS  Google Scholar 

  21. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357 (2010).

    CAS  Google Scholar 

  22. W.Y. Lee, N.W. Park, J.Y. Ahn, A. Umar, and S.K. Lee, Anisotropic behavior of the temperature-dependent thermal conductivity in p-type bismuth antimony telluride (p-Bi0.5Sb1.5Te3) thin films. J. Nanoelectron. Optoelectron. 12, 1123 (2017).

    CAS  Google Scholar 

  23. H. Armstrong, M. Boese, C. Carmichael, H. Dimich, D. Seay, N. Sheppard, and M. Beekman, Estimating energy conversion efficiency of thermoelectric materials: constant property versus average property models. J. Electron. Mater. 46, 6 (2017).

    CAS  Google Scholar 

  24. D. Park, S. Park, K. Jeong, H.S. Jeong, J.Y. Song, and M.H. Cho, Thermal and electrical conduction of single-crystal Bi2Te3 nanostructures grown using a one step process. Sci. Rep. 6, 19132 (2016).

    CAS  Google Scholar 

  25. Y.R. Koh, K. Yazawa, and A. Shakouri, Performance and mass optimization of thermoelectric microcoolers. Int. J. Therm. Sci. 97, 143 (2015).

    CAS  Google Scholar 

  26. M.T. Dunham, M.T. Barako, S. Leblanc, M. Asheghi, B.X. Chen, and K.E. Goodson, Power density optimization for micro thermoelectric generators. Energy 93, 2006 (2015).

    Google Scholar 

  27. X.Y. Zhou, Y.C. Yan, X. Lu, H.T. Zhu, X.D. Han, G. Chen, and Z.F. Ren, Routes for high-performance thermoelectric materials. Mater. Today 21, 974 (2018).

    CAS  Google Scholar 

  28. M. Mitra, D. Banerjee, K. Kargupta, and S. Ganguly, Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite. AIP Conf. Proc. 1728, 020468 (2016).

    Google Scholar 

  29. S. Ma, K. Anderson, L. Guo, A. Yousuf, E.C. Ellingsworth, C. Vainer, H.T. Wang, and G. Szulczewski, Temperature dependent thermopower and electrical conductivity of Te nanowire/poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) micro-ribbons. Appl. Phys. Lett. 105, 073905 (2014).

    Google Scholar 

  30. S. Ballikaya, H. Chi, J.R. Salvador, and C. Uher, Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. J. Mater. Chem. A 1, 12478 (2013).

    CAS  Google Scholar 

  31. Z.H. Jin and T.T. Wallace, Functionally graded thermoelectric materials with arbitrary property gradations: a one-dimensional semianalytical study. J. Electron. Mater. 44, 1444 (2015).

    CAS  Google Scholar 

  32. G.J. Snder and E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Google Scholar 

  33. Y.J. Wu, J.H. Yang, S.K. Chen, and L. Zuo, Thermo-element geometry optimization for high thermoelectric efficiency. Energy 147, 672 (2018).

    CAS  Google Scholar 

  34. G.J. Snder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electric-crystal thermoelectric properties. Nat. Mater. 3, 458 (2004).

    Google Scholar 

  35. R. Rogolino and V.A. Cimmelli, Thermoelectric efficiency of graded Sic Ge1-c alloys. J. Appl. Phys. 124, 094301 (2018).

    Google Scholar 

  36. W. Seifert, K. Zabrocki, G.J. Snyder, and E. Mueller, The compatibility approach in the classical theory of thermoelectricity seen from the perspective of variational calculus. Phys. Status Solidia Appl. Mater. Sci. 207, 760 (2010).

    CAS  Google Scholar 

  37. E. Muller, K. Zabrocki, C. Goupil, G.J. Snyder, W. Seifert, Functionally graded thermoelectric generater and cooler elements. In CRC Handbook of Thermoelectrics: Thermoelectrics and Its Energy Harvesting, ed.Rowe DM, RC: Boca Raton, FL, USA, Chapter 4 (2012).

  38. N.S. Benday, D.M. Dryden, K. Kornbluth, and P.A. Stroeve, Temperature-variant method for performance modeling and economic analysis of thermoelectric generators: linking material properties to real-world conditions. Appl. Energy 190, 764 (2017).

    CAS  Google Scholar 

  39. M. Chen, L.A. Rosendahl, T.J. Condra, and J.K. Pedersen, Numerical modeling of thermoelectric generators with varing material properties in a circuit simulator. IEEE Trans. Energy Convers. 24, 112 (2009).

    CAS  Google Scholar 

  40. G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, Comparison of different modeling approaches for thermoelectric elements. Energy Convers. Manag. 65, 351 (2013).

    Google Scholar 

  41. O.V. Marchenko, Performance modeling of thermoelectric devices by perturbation method. Int. J. Therm. Sci. 129, 334 (2018).

    Google Scholar 

  42. T.J. Hendricks, Perturbation methods for real-time in situ evaluation of hot-side thermal resistances in thermoelectric energy recovery systems. J. Electron. Mater. 44, 1909 (2015).

    CAS  Google Scholar 

  43. C.L. Cramer, H. Wang, and K.K. Ma, Performance of functionally graded thermoelectric materials and devices: a review. J. Electron. Mater. 47, 5122 (2018).

    CAS  Google Scholar 

  44. G.D. Mahan, Inhomogeneous thermoelectrics. J. Appl. Phys. 70, 4551 (1991).

    CAS  Google Scholar 

  45. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation. J. Mater. Sci. 37, 2893 (2002).

    CAS  Google Scholar 

  46. E. Muller, C. Drasar, J. Schilz, and W.A. Kaysser, Functionally graded materials for sensor and energy applications. Mater. Sci. Eng. A 362, 17 (2003).

    Google Scholar 

  47. Z.J. Jin, T.T. Wallace, R.J. Lad, and J. Su, Energy conversion efficiency of an exponentially graded thermoelectric material. J. Electron. Mater. 43, 308 (2014).

    CAS  Google Scholar 

  48. C.L. Cramer, J. Gonzalez-Julian, P.S. Colasuonno, and T.B. Holland, Continuous functionally graded material to improve the thermoelectric properties of ZnO. J. Eur. Ceram. Soc. 37, 4693 (2017).

    CAS  Google Scholar 

  49. C.L. Cramer, W.J. Li, Z.H. Jin, J. Wang, K. Ma, and T.B. Holland, Techniques for mitigating thermal fatigue degradation, controlling efficiency, and extending lifetime in a ZnO thermoelectric using grain size gradient FGMs. J. Electron. Mater. 47, 866 (2018).

    CAS  Google Scholar 

  50. K. Zabrocki, E. Muller, W. Seifert, and S. Trimper, Performance optimization of a thermoelectric generator element with linear, spatial material profiles in a one-dimensional setup. J. Mater. Res. 26, 1963 (2011).

    CAS  Google Scholar 

  51. X.S. Cao and J.S. Yang, Analysis of thermoelectric generators with general material property variations. J. Electron. Mater. 48, 5516 (2019).

    CAS  Google Scholar 

  52. T.T. Wallace, Z.H. Jin, and J. Su, Efficiency of a sandwiched thermoelectric material with a graded interlayer and temperature-dependent properties. J. Electron. Mater. 45, 2142 (2016).

    CAS  Google Scholar 

  53. G.J. Synder. Thermoelectrics Handbook: Macro to Nano, ed. Rowe D.W., Ph.D, Sc D. New York: Taylor & Francis, Chapter 9 (2006).

  54. E.H. Kerner, The elastic and thermoelastic properties of composite media. Proc. Phys. Soc. London, Sect. B 69, 808 (1956).

    Google Scholar 

  55. Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127 (1963).

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant Numbers 11572244, 11872300]; NSAF [Grant Number U1630144]; the Open Subject of State Key Laboratories of Transducer Technology [Grant Number SKT1506]; and the Youth Innovation Team of Shaanxi Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshan Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Niu, W., Cheng, Z. et al. Power Series Iterative Approximation Solution to the Temperature Field in Thermoelectric Generators Made of a Functionally Graded Temperature-Dependent Material. J. Electron. Mater. 49, 5379–5390 (2020). https://doi.org/10.1007/s11664-020-08270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08270-z

Keywords

Navigation