Skip to main content
Log in

Thermal conductivity and enhanced thermoelectric efficiency of composition-graded \({\hbox {Si}}_c{\hbox {Ge}}_{1-c}\) alloys

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We explore the efficiency of a thermoelectric energy converter constituted by a Si/Ge nanowire of length L. A constitutive equation of thermal conductivity as function of composition and temperature is derived in accordance with experimental data obtained at the constant temperatures \(T=300\,\hbox {K}\), \(T=400\,\hbox {K}\), and \(T=500\,\hbox {K}\) by a nonlinear regression method. A thermodynamic model of thermoelectric energy converter is developed in accordance with second law of thermodynamics. Then, we investigate the thermoelectric efficiency of such system as function of the composition, and of both composition and temperature gradients applied at its ends. For each temperature, we calculate the values of composition and heat conductivity giving the optimal efficiency of the thermoelectric energy conversion. A series of constraints on the material functions entering the model equations, which are necessary and sufficient to guarantee the optimal efficiency of the system, are determined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gelbstein, Y., Dashevsky, Z., Dariel, M.: High performance n-type PbTe-based materials for thermoelectric applications. Phys. B 363, 196–205 (2005)

    Article  Google Scholar 

  2. Olatunji-Ojo, A.O., Boetcherb, S.K.S., Cundaria, T.R.: Thermal conduction analysis of layered functionally graded materials. Comput. Mater. Sci. 54, 329–335 (2012)

    Article  Google Scholar 

  3. Lebon, G.: Heat conduction at micro and nanoscales: a review through the prism of Extended Irreversible Thermodynamics. J. Non-Equilib. Thermodyn. 39, 35–59 (2014)

    Article  Google Scholar 

  4. Yang, N., Zhang, G., Li, B.: Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008)

    Article  Google Scholar 

  5. Gonzalez-Noya, E., Srivastava, D., Menon, M.: Heat-pulse rectification in carbon nanotube Y junctions. Phys. Rev. B 79, 115432 (2009)

    Article  Google Scholar 

  6. Carlomagno, I., Cimmelli, V.A., Jou, D.: Computational analysis of heat rectification in composition-graded systems: from macro to nano scale. Phys. B 481, 244–251 (2016)

    Article  Google Scholar 

  7. Carlomagno, I., Cimmelli, V.A., Jou, D.: Heat flux rectification in graded \({S}i_c{G}e_{1-c}\): longitudinal and radial heat flows. Physica E 90, 149–157 (2017)

    Article  Google Scholar 

  8. Rogolino, P., Cimmelli, V.A.: Thermoelectric efficiency of graded \({S}i_c\,{G}e_{1-c}\) alloys. J. Appl. Phys. 124, 094301 (2018)

    Article  Google Scholar 

  9. Mingo, N.: Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires. Appl. Phys. Lett. 84, 2652 (2004)

    Article  Google Scholar 

  10. Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, New York (2001)

    Book  Google Scholar 

  11. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)

    Book  Google Scholar 

  12. Sellitto, A.: A two-temperature model for thermoelectric effects and its consequences in practical applications. Z. Angew. Math. Phys. 66, 3433–3445 (2015)

    Article  MathSciNet  Google Scholar 

  13. Balandin, A., Wang, K.L.: Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998)

    Article  Google Scholar 

  14. Kuznetsov, V.L.: Functionally graded materials for termoelectric applications. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano—Sec. 38. CRC Press, Boca Raton (2005)

    Google Scholar 

  15. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)

    Article  Google Scholar 

  16. Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures, second edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  17. Goodson, K.E., Flik, M.I.: Electron and phonon thermal conduction in epitaxial high-\({T}_{c}\) superconducting films. J. Heat Transf. 115, 17–25 (1993)

    Article  Google Scholar 

  18. Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670–4674 (2008)

    Article  Google Scholar 

  19. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, fourth revised edn. Springer, Berlin (2010)

    Book  Google Scholar 

  20. Sellitto, A., Cimmelli, V.A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems. Springer, Berlin (2016)

    Book  Google Scholar 

  21. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (2010)

    Article  Google Scholar 

  22. Rogolino, P., Sellitto, A., Cimmelli, V.A.: Minimal entropy production and efficiency of energy conversion in nonlinear thermoelectric systems with two temperatures. J. Non-Equilib. Thermodyn. 42, 287–303 (2017)

    Article  Google Scholar 

  23. Rogolino, P., Sellitto, A., Cimmelli, V.A.: Influence of nonlinear effects on the efficiency of a thermoelectric generator. Z. Angew. Math. Phys. 66, 2829–2842 (2015)

    Article  MathSciNet  Google Scholar 

  24. Jou, D., Carlomagno, I., Cimmelli, V.A.: Rectification of low-frequency thermal waves in graded \({S}i_c{G}e_{1-c}\). Phys. Lett. A 380, 1824–1829 (2016)

    Article  Google Scholar 

  25. Glassbrenner, C., Slack, G.: Thermal conductivity of silicon and germanium from \(3^\circ \) K to the melting point. Phys. Rev. 134, 1058–1069 (1964)

    Article  Google Scholar 

  26. Steele, M., Rosi, F.: Thermal conductivity and thermoelectric power of germanium–silicon alloys. J. Appl. Phys. 29, 1517–1520 (1958)

    Article  Google Scholar 

  27. Abeles, B., Beers, D., Cody, G., Dismukes, J.: Thermal conductivity of Ge–Si alloys at high temperatures. Phys. Rev. 125, 44–46 (1962)

    Article  Google Scholar 

  28. Romano, V., Zwierz, M.: Electron-phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 61, 1111–1131 (2010)

    Article  MathSciNet  Google Scholar 

  29. Rogolino, P., Cimmelli, V.A.: Fitting Thermal conductivity and optimizing thermoelectric efficiency in \({S}i_c\,{G}e_{1-c}\) naniwires. Math. Comput. Simul. 176, 279–291 (2020)

    Article  Google Scholar 

  30. Chatterjee, S., Hadi, A.S.: Regression Analysis by Example, 5th edn. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  31. Motulsky, J.H., Christopoulos, A.: Fitting Models to Biological Data Using Linear and Nonlinear Regression. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  32. Motulsky, J.H., Ransnas, A.L.: Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1, 365–374 (1987)

    Article  Google Scholar 

  33. Sellitto, A., Cimmelli, V.A.: Flux limiters in radial heat transport in silicon nanolayers. J. Heat Transf. 136, 1–8 (2014)

    Article  Google Scholar 

  34. Sellitto, A., Cimmelli, V.A., Jou, D.: Nonlinear propagation of coupled first- and second-sound waves in thermoelastic solids. J. Elast. 138, 93–109 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

P. R. acknowledges the financial support of the National Group of Mathematical Physics (GNFM-INdAM) and of the University of Messina under grant FFABR 2019. V. A. C. acknowledges the financial support of the National Group of Mathematical Physics (GNFM-INdAM), and of the University of Basilicata under Grants RIL 2013 and RIL 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Cimmelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogolino, P., Cimmelli, V.A. Thermal conductivity and enhanced thermoelectric efficiency of composition-graded \({\hbox {Si}}_c{\hbox {Ge}}_{1-c}\) alloys. Z. Angew. Math. Phys. 71, 92 (2020). https://doi.org/10.1007/s00033-020-01311-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01311-x

Keywords

Mathematics Subject Classification

Navigation