Skip to main content

Advertisement

Log in

Performance Analysis of a Functionally Graded Thermoelectric Element with Temperature-Dependent Material Properties

  • Progress and Challenges for Emerging Integrated Energy Modules
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A concept of functionally graded thermoelectric materials (FGTEMs) with graded material properties is proposed, in which the material properties are both temperature and spatially dependent. In this paper, we study the performance of a functionally graded thermoelectric (TE) element, including the temperature field, heat flux, power output, and energy conversion efficiency. The results suggest that it is necessary to take into account the temperature-dependent material properties to analyze the performance of functionally graded TE device accurately. Meanwhile, the data show that there is a significant increment in the power output and energy conversion efficiency if proper material property gradients are achieved. Additionally, the results indicate that thermal conductivity has a considerable influence on the temperature field and heat flux distribution, while the Seebeck coefficient plays a critical role in the power output and efficiency of energy conversion. In order to validate the proposed model, it was applied to an experimental case of a functionally graded bismuth antimony TE couple where the numerical results showed good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  3. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, Chapter 1, ed. D.M. Rowe (New York: Taylor & Francis, 2006).

    Google Scholar 

  4. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  5. S. Su, T. Liu, Y. Wang, X. Chen, J. Wang, and J. Chen, Appl. Energy 120, 16 (2014).

    Article  Google Scholar 

  6. G.S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).

    Article  Google Scholar 

  7. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  8. K. Nielsch, J. Bachmann, J. Kimling, and H. Böttner, Adv. Energy Mater. 1, 713 (2011).

    Article  Google Scholar 

  9. R. Al Rahal Al Orabi, J. Hwang, C.C. Lin, R. Gautier, B. Fontaine, W. Kim, J.S. Rhyee, D. Wee, and M. Fornari, Chem. Mater. 29, 612 (2017).

    Article  Google Scholar 

  10. G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).

    Article  Google Scholar 

  11. B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, and R.A. Segalman, Nat. Rev. Mater. 1, 16050 (2016).

    Article  Google Scholar 

  12. T.T. Wallace, Z.H. Jin, and J. Su, J. Electron. Mater. 45, 2142 (2016).

    Article  Google Scholar 

  13. E. Hazan, O. Ben-Yehuda, N. Madar, and Y. Gelbstein, Adv. Energy Mater. 5, 1 (2015).

    Article  Google Scholar 

  14. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B 391, 256 (2007).

    Article  Google Scholar 

  15. J. Wang, Y. Wang, S. Su, and J. Chen, Energy 121, 427 (2017).

    Article  Google Scholar 

  16. V.L. Kuznetsov, Thermoelectrics Handbook: Macro to Nano, Chapter 38, ed. D.M. Rowe (New York: Taylor & Francis, 2006).

    Google Scholar 

  17. J. Schilz, L. Helmers, W.E. Müller, and M. Niino, J. Appl. Phys. 83, 1150 (1998).

    Article  Google Scholar 

  18. E. Müller, Č. Drašar, J. Schilz, and W.A. Kaysser, Mater. Sci. Eng. A 362, 17 (2003).

    Article  Google Scholar 

  19. L. Xin, S. Yang, D. Zhou, and G. Dui, Compos. Struct. 135, 74 (2016).

    Article  Google Scholar 

  20. Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, and L. Chen, Energy Environ. Sci. 10, 956 (2017).

    Article  Google Scholar 

  21. K. Zabrocki, E. Müller, and W. Seifert, J. Electron. Mater. 39, 1724 (2010).

    Article  Google Scholar 

  22. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Mater. Sci. 37, 2893 (2002).

    Article  Google Scholar 

  23. Z. Dashevsky, S. Shusterman, A. Horowitz, and M.P. Dariel, MRS Online Proc. Libr. Arch. 545, 513 (1998).

    Article  Google Scholar 

  24. Z.H. Jin and T.T. Wallace, J. Electron. Mater. 44, 1444 (2015).

    Article  Google Scholar 

  25. Z. Bian and A. Shakouri, Appl. Phys. Lett. 89, 212101 (2006).

    Article  Google Scholar 

  26. Z.H. Jin, T.T. Wallace, R.J. Lad, and J. Su, J. Electron. Mater. 43, 308 (2014).

    Article  Google Scholar 

  27. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

  28. J. Sui, J. Shuai, Y. Lan, Y. Liu, R. He, D. Wang, Q. Jie, and Z. Ren, Acta Mater. 87, 266 (2015).

    Article  Google Scholar 

  29. A. Mehdizadeh Dehkordi, M. Zebarjadi, J. He, and T.M. Tritt, Mat. Sci. Eng. R 97, 1 (2015).

    Article  Google Scholar 

  30. C. Ju, G. Dui, H.H. Zheng, and L. Xin, Energy 124, 249 (2017).

    Article  Google Scholar 

  31. D. Wee, Energy Convers. Manag. 52, 3383 (2011).

    Article  Google Scholar 

  32. S. Su, T. Liu, J. Wang, and J. Chen, Energy 70, 79 (2014).

    Article  Google Scholar 

  33. H.S. Kim, W. Liu, G. Chen, C.-W. Chu, and Z. Ren, Proc. Natl. Acad. Sci. 112, 8205 (2015).

    Article  Google Scholar 

  34. T. Zhang, J. Electron. Mater. 44, 3612 (2015).

    Article  Google Scholar 

  35. G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, Energy Convers. Manag. 65, 351 (2013).

    Article  Google Scholar 

  36. O. Appel, T. Zilber, S. Kalabukhov, and Y. Gelbstein, J. Mater. Chem. C 3, 11653 (2015).

    Article  Google Scholar 

  37. B. Dado, Y. Gelbstein, D. Mogilansky, V. Ezersky, and M.P. Dariel, J. Electron. Mater. 39, 2165 (2010).

    Article  Google Scholar 

  38. J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, and K. Wang, Adv. Funct. Mater. 23, 4317 (2013).

    Article  Google Scholar 

  39. J. Peng, L. Fu, Q. Liu, M. Liu, J. Yang, D. Hitchcock, M. Zhou, and J. He, J. Mater. Chem. A 2, 73 (2014).

    Article  Google Scholar 

  40. W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, X.F. Tang, Q.J. Zhang, and T.M. Tritt, Acta Mater. 58, 4705 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11772041). This work was also supported by the China Scholarship Council (201707090036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guansuo Dui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, C., Dui, G., Uhl, C.G. et al. Performance Analysis of a Functionally Graded Thermoelectric Element with Temperature-Dependent Material Properties. J. Electron. Mater. 48, 5542–5554 (2019). https://doi.org/10.1007/s11664-019-07006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07006-y

Keywords

Navigation