Skip to main content
Log in

Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Amini, C.T. Laurencin, and S.P. Nukavarapu, Crit. Rev. Biomed. Eng. 40, 363 (2012).

    Article  Google Scholar 

  2. D.A. Wahl and J.T. Czernuszka, Eur. Cell Mater. 11, 43 (2006).

    Google Scholar 

  3. A.S. Hoffman, Adv. Drug Del. Rev. 43, 2 (2002).

    Google Scholar 

  4. N.Q. Tran, Y.K. Joung, E. Lih, K.M. Park, and K.D. Park, Biomacromolecules 11, 617 (2010).

    Article  Google Scholar 

  5. E. Lih, J.S. Lee, K.M. Park, and K.D. Park, Acta Biomater. 8, 3261 (2012).

    Article  Google Scholar 

  6. K.M. Park, Y.M. Shin, Y.K. Joung, H. Shin, and K.D. Park, Biomacromolecules 11, 706 (2010).

    Article  Google Scholar 

  7. K.M. Park, K.S. Ko, Y.K. Joung, H. Shin, and K.D. Park, J. Mater. Chem. 21, 13180 (2011).

    Article  Google Scholar 

  8. S. Pina, J.M. Oliveira, and R.L. Reis, Adv. Mater. (2015). doi:10.1002/adma.201403354.

    Google Scholar 

  9. K. Gkioni, S.C. Leeuwenburgh, T.E. Douglas, A.G. Mikos, and J.A. Jansen, Tissue Eng. Part B Rev. 16, 577 (2010).

    Article  Google Scholar 

  10. Y.S. Pek, M. Kurisawa, S. Gao, J.E. Chung, and J.Y. Ying, Biomaterials 30, 822 (2009).

    Article  Google Scholar 

  11. W. Cao and L.L. Hench, Ceram. Int. 22, 493 (1996).

    Article  Google Scholar 

  12. S.M. Rea, S.M. Best, and W. Bonfield, J. Mater. Sci. Mater. Med. 15, 997 (2004).

    Article  Google Scholar 

  13. V. Sanginario, M.P. Ginebra, K.E. Tanner, J.A. Planell, and L. Amabrosio, J. Mater. Sci. Mater. Med. 17, 447 (2006).

    Article  Google Scholar 

  14. M.A. Barbosa, P.L. Granja, C.C. Barrias, and I.F. Amaral, ITBM-RBM 26, 212 (2005).

    Article  Google Scholar 

  15. N.C. Veitch, Phytochemistry 65, 649 (2004).

    Article  Google Scholar 

  16. R. Jin, C. Hiemstra, Z. Zhong, and J. Feijen, Biomaterials 28, 2791–2800 (2007).

    Article  Google Scholar 

  17. M. Kurisawa, J.E. Chung, Y.Y. Yang, S.J. Gao, and H. Uyama, Chem. Commun. 34, 4312–4314 (2005).

    Article  Google Scholar 

  18. Y. Yuji, Y. Fen, C. Junfeng, Z. Fujing, L. Xiulan, and Y. Kangde, J. Biomed. Mater. Res. 67A, 844–855 (2003).

    Article  Google Scholar 

  19. J. Li, Y. Dou, J. Yang, Y. Yin, H. Zhang, F. Yao, F. Yao, H. Wang, and K. Yao, Mat. Sci. Eng. C 29, 1207–1215 (2009).

    Article  Google Scholar 

  20. G. Ciapetti, L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa, and A. Giunti, Biomaterials 24, 3815 (2003).

    Article  Google Scholar 

  21. H. Pan, X. Zhao, B.W. Darvell, and W.W. Lu, Acta Biomater. 6, 4181 (2010).

    Article  Google Scholar 

  22. T. Kokubo and H. Takadama, Biomaterials 27, 2907 (2006).

    Article  Google Scholar 

  23. K.R. Mohamed, H.H. Beherei, and Z.M. El-Rashidy, J. Adv. Res. 5, 201 (2014).

    Article  Google Scholar 

  24. A.A. Zadpoor, Eng. C Mater Biol Appl 35, 134 (2014).

    Article  Google Scholar 

  25. K. Anselme, Biomaterials 7, 667 (2000).

    Article  Google Scholar 

  26. D. Gupta, J. Venugopal, S. Mitra, V.R.G. Dev, and S. Ramakrishna, Biomaterials 11, 2085 (2009).

    Article  Google Scholar 

  27. M. Ngiam, S. Liaob, A.J. Patil, Z. Cheng, C.K. Chan, and S. Ramakrishna, Bone 1, 4 (2009).

    Article  Google Scholar 

  28. J.Y. Lim, M.C. Shaughnessy, Z. Zhou, H. Noh, E.A. Vogler, and H.J. Donahue, Biomaterials 12, 1776 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Thi Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, T.D., Tran, N.Q., Nguyen, D.H. et al. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration. J. Electron. Mater. 45, 2415–2422 (2016). https://doi.org/10.1007/s11664-016-4354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4354-3

Keywords

Navigation