Skip to main content

Advertisement

Log in

Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable and semi-biodegradable composite hydrogels are proposed as bone substitutes. They consist of an hydrophilic biodegradable polymer (HYAFF 11) as matrix and two ceramic powders (α-TCP and HA) as reinforcement. Both components of these composites have been of great interest in biomedical applications due to their excellent biocompatibility and tissue interactions, however they have never been investigated as bone substitute composites. Morphological and mechanical analysis have shown that the two fillers behave in a very different way. In the HYAFF 11/α-TCP composite, α-TCP is able to hydrolyze in contact with water while in the HYAFF 11 matrix. As a result, the composite sets and hardens, and entangled CDHA crystals are formed in the hydrogel phase and increases in the mechanical properties are obtained. In the HYAFF11/HA composite the ceramic reinforcement acts as inert phase leading to lower mechanical properties. Both mechanical properties and microstructure analysis have demonstrated the possibility to design hydrophilic biodegradable composite structures for bone tissue substitution applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Athanasiou, C. F. Zhu, D. R. Lancot, C. M. Agrawal and X. Wang. Fundamentals of Biomechanism in Tissue Engineering. 6, (2000) 361–381.

    CAS  Google Scholar 

  2. J. D. Currey. Proc. Instn. Mech Engrs Vol 212 Part H. pp. 399–411 (1998).

    CAS  Google Scholar 

  3. S. Iannace, L. Ambrosio, L.Nicolais, A. Rastrelli and A. Pastorello. J. Mat. Sci.: Mat. Med. 3 (1994) 59–64.

    Article  Google Scholar 

  4. D. Campoccia, J. A. Hunt, P. Doherty, S. Zhong, M. O. Regan, L. Benedetti and D. F. Williams Biomaterials (1996), 17(10), 963–975.

    Article  CAS  Google Scholar 

  5. L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Mazzo, M. Moras and G. Abatangelo. Biomaterials (1993), 14(15), 1154–60.

    Article  CAS  Google Scholar 

  6. D. Campoccia, P. Doherty, M Radice, Brun, G. Abatangelo and D. F. Williams. Biomaterials (1998), 19(23), 2101–2127.

    Article  CAS  Google Scholar 

  7. F. C. M. Driessens, M. G. Boltong, O. Bermudez, J. A. Planell, M. P. Ginebra and E. Fern. Journal of Materials Science: Materials in Medicine 5 (1994) 164–170.

    Article  CAS  Google Scholar 

  8. K. de Groot Ceram Int. 19 (1993) 363–366.

    Article  Google Scholar 

  9. E. Fernandez, F. J.Gil, M. P. Ginebra, J. A. Planell and S. M. Best. J. Mater. Sci.: Mat. Med 10 (1999) 169–176.

    Article  CAS  Google Scholar 

  10. M. P. Ginebra, E. Fernandez, E. A. P. De Mayer, R. M. H. Verbeeck, M. G. Boltong, J. Ginebra, F. C. M. Driessens and J. A. Planell. J. Dent. Res. 76 (1997) 905–912.

    Article  CAS  Google Scholar 

  11. B. Flauter, K. Anselm, C. Delecourt and M, Descamps. J. Mat Sci.: Mat. Med. 10 (1999) 111– 117.

    Article  Google Scholar 

  12. M. Schmitt, P. Weiss, X. Bourges, G. Amador del Valle and G. Daculsi. Biomaterials 23 (2002) 2789–2794.

    Article  CAS  Google Scholar 

  13. O. Gauthier, J. M. Bouler, P. Weiss, G. Grimandi and G. Daculsi. Bone 25 (1999); 65s–70s.

    Article  Google Scholar 

  14. D. S. Metsger, M. R. Rieger and D. W. Foreman J. Mat.Sci.: Mat. Med. 10, (1999) 9–17.

    Article  CAS  Google Scholar 

  15. R. A. Mickiewicz, A. M. Mayes and D. Knaack. Journal of Biomedical Materials Research 61(4) (2002), 581–592.

    Article  CAS  Google Scholar 

  16. L. A. Dos Santos, L. C. De Oliveira, E. C. S. Rigo, A. O. Boschi and A. C. F. De Arruda. Bone 25, (1999) 99s–102s.

    Article  CAS  Google Scholar 

  17. L. Ambrosio, A. Borzacchiello, P. A. Netti and L. Nicolais. J. Macromolecular Science Pure Applied Chemistry. (1999) A 36: 7–8.

    Google Scholar 

  18. R. M. Pilliar, M. J. Filiagg, J. D. Wells, M. D. Grynpas and R. A. Kandel. Biomaterials 22 (2001) 963–972.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanginario, V., Ginebra, M.P., Tanner, K.E. et al. Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization. J Mater Sci: Mater Med 17, 447–454 (2006). https://doi.org/10.1007/s10856-006-8472-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-8472-y

Keywords

Navigation