Skip to main content
Log in

Numerical Understanding of Electromagnetic Influence on Fluctuation Behavior at Slag/Steel Interface During LF Refining Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The objective of this study was to create a novel 3D coupled numerical model that explores the impact of electromagnetism on the fluctuation of the slag/steel interface during the LF refining process. To evaluate the effects of alternating current power, an AC phasor was introduced to examine the Lorentz force and Joule heating phenomena. Turbulent motion was represented using the large eddy simulation technique, while the volume-of-fluid approach was utilized to illustrate the deformation of the air/slag/steel interface. The discrete phase model and the two-way coupled Euler–Lagrange technique were employed to track the motion of gas bubbles, accounting for bubble collision, coalescence, and breakup. By comparing the simulated results with experimental data, the model’s fundamental validity was confirmed. The findings emphasized the importance of concurrently considering both the electromagnetic field and the bubbly flow in the investigation of the LF refining process. It was observed that the Lorentz force played a crucial role in promoting the fluctuation of the slag/steel interface, potentially leading to the absorption of carbon by the molten steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(A_{b}\) :

Bubble surface area (m2)

\(c_{p,a}\) :

Specific heat of air at constant pressure (J/(kg K))

\(c_{p,b}\) :

Specific heat of bubble at constant pressure (J/(kg K))

\(c_{p,m}\) :

Specific heat of molten steel at constant pressure (J/(kg K))

\(c_{p,s}\) :

Specific heat of molten slag at constant pressure (J/(kg K))

\(d_{b}\) :

Bubble diameter (m)

\(\overline{E}\) :

Internal energy of mixture liquid phase (J/m3)

\(\vec{F}_{b}\) :

Buoyancy force (N/m3)

\(\vec{F}_{d}\) :

Drag force (N/m3)

\(\vec{F}_{g}\) :

Gravitational force (N/m3)

\(\vec{F}_{L}\) :

Lorentz force (N/m3)

\(\vec{F}_{\ell }\) :

Lift force (N/m3)

\(\vec{F}_{p}\) :

Pressure gradient force (N/m3)

\(\vec{F}_{st}\) :

Interface tension (N/m3)

\(\vec{F}_{vm}\) :

Virtual mass force (N/m3)

\(f\) :

Frequency of AC power (Hz)

\(\vec{J}\) :

Electric current (A/m2)

\(\vec{H}\) :

Magnetic field intensity (A/m)

\(\hat{H}\) :

Complex amplitude (A/m)

\(h_{m,b}\) :

Convective heat transfer coefficient between melt and bubble (W/(m2 K))

\(k_{T,eff}\) :

Effective thermal conductivity of liquid phase (W/(m K))

\(m_{b}\) :

Mass of bubble (kg)

\(p\) :

Pressure (Pa)

\(Q_{J}\) :

Joule heating density (W/m3)

\(\vec{S}_{mb}\) :

Source term used in Eq. [9] (N/m3)

\(T\) :

Temperature (K)

\(T_{b}\) :

Bubble temperature (K)

\(t\) :

Time (s)

\(\vec{v}\) :

Melt velocity (m/s)

\(\vec{v}_{b}\) :

Bubble velocity (m/s)

\(\alpha_{s}\) :

Molten slag volume fraction

\(\alpha_{m}\) :

Molten steel volume fraction

\(\overline{\eta }\) :

Magnetic diffusivity of mixture phase (m2/s)

\(\mu_{0}\) :

Vacuum permeability (H/m)

\(\overline{\mu }\) :

Mixture liquid phase dynamic viscosity (Pa s)

\(\overline{\mu }_{{{\text{sgs}}}}\) :

Mixture liquid phase eddy viscosity (Pa s)

\(\mu_{t}\) :

Turbulent viscosity (Pa s)

\(\rho_{a}\) :

Air density (kg/m3)

\(\rho_{b}\) :

Argon gas bubble density (kg/m3)

\(\rho_{m}\) :

Molten steel density (kg/m3)

\(\rho_{s}\) :

Molten slag density (kg/m3)

\(\overline{\sigma }\) :

Electrical conductivity of the mixture phase (Ω1 m1)

\(\omega\) :

Angular frequency (Hz)

References

  1. M. Jiang, K. Li, R. Wang, E. Yang, and X. Wang: ISIJ Int., 2022, vol. 62, pp. 124–32.

    Article  CAS  Google Scholar 

  2. G. Yuasa, T. Yajima, A. Ukai, and M. Ozawa: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 412–18.

    Article  CAS  Google Scholar 

  3. G. Venturini and M.B. Goldschmit: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 461–75.

    Article  CAS  Google Scholar 

  4. D. Guo and G.A. Irons: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1457–64.

    Article  CAS  Google Scholar 

  5. W. Gong, Z. Jiang, L. Pan, and D. Tang: Iron and Steel, 2009, vol. 44, pp. 40–42. (in Chinese).

    CAS  Google Scholar 

  6. S. Zhang, L. Wen, C. Bai, D. Chen, and Z. Long: Appl. Math. Modell., 2009, vol. 33, pp. 2646–62.

    Article  Google Scholar 

  7. D. Zhan, F. Li, H. Zhang, Z. Jiang, and J. He: J. Iron Steel Res. Int., 2012, vol. 19, pp. 691–94.

    Google Scholar 

  8. H. Duan, L. Zhang, B.G. Thomas, and A.N. Conejo: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2722–43.

    Article  Google Scholar 

  9. U. Sand, H. Yang, J.-E. Eriksson, and R.B. Fdhila: Steel Res. Int., 2009, vol. 80, pp. 441–49.

    CAS  Google Scholar 

  10. O.J. Ilegbusi, J. Szekely, M. Iguchi, H. Takeuchi, and Z.I. Morita: ISIJ Int., 2007, vol. 33, pp. 474–78.

    Article  Google Scholar 

  11. M. Dubke, K.H. Tacke, K.H. Spitzer, and K. Schwerdtfeger: Metall. Mater. Trans. B, 1988, vol. 19B, pp. 581–93.

    Article  CAS  Google Scholar 

  12. H. Duan, Y. Ren, and L. Zhang: JOM, 2018, vol. 70, pp. 2128–38.

    Article  CAS  Google Scholar 

  13. Q. Cao, L. Nastac, A. Pitts-Baggett, and Q. Yu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 988–1002.

    Article  Google Scholar 

  14. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271–80.

    Article  CAS  Google Scholar 

  15. P. Nikolic and Z. Tesanovic: Phys. Rev. B, 2013, vol. 87, 134511.

    Article  Google Scholar 

  16. Q. Wang, Z. He, G. Li, B. Li, C. Zhu, and P. Chen: Int. J. Heat Mass Transf., 2017, vol. 104, pp. 943–51.

    Article  CAS  Google Scholar 

  17. A. Ivorra, L.M. Mir, and B. Rubinsky: IFMBE Proc., 2009, vol. 25, pp. 59–62.

    Article  Google Scholar 

  18. G.G. Babichev, V.N. Guz, I.P. Zhadko, S.I. Kozlovskiy, and V.A. Romanov: Tech. Phys., 1994, vol. 39, pp. 733–34.

    Google Scholar 

  19. Q. Wang, Z. He, B. Li, and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2425–41.

    Article  Google Scholar 

  20. T. Kulju, S. Ollila, R.L. Keiski, and E. Muurinen: Mater. Sci. Forum, 2013, vol. 762, pp. 248–52.

    Article  Google Scholar 

  21. Q. Wang, C. Liu, L. Pan, Z. He, G. Li, and Q. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1617–30.

    Article  Google Scholar 

  22. Z. Liu, B. Li, and M. Jiang: ISIJ Int., 2013, vol. 53, pp. 484–92.

    Article  CAS  Google Scholar 

  23. L. Li, B. Li, and Z. Liu: ISIJ Int., 2017, vol. 57, pp. 1980–89.

    Article  CAS  Google Scholar 

  24. L. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59–82.

    Article  CAS  Google Scholar 

  25. Q. Wang, Y. Liu, R. Lu, F. Wang, Z. He, and G. Li: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 107–22.

    Article  Google Scholar 

  26. S. Smolentsev, S. Cuevas, and A. Beltrán: J. Comput. Phys., 2010, vol. 229, pp. 1558–72.

    Article  CAS  Google Scholar 

  27. B. Knaepen and R. Moreau: Annu. Rev. Fluid Mech., 2008, vol. 40, pp. 25–45.

    Article  Google Scholar 

  28. X. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1837–49.

    Article  Google Scholar 

  29. A. Senguttuvan and G.A. Irons: ISIJ Int., 2017, vol. 57, pp. 1962–70.

    Article  CAS  Google Scholar 

  30. L. Li, Z. Liu, M. Cao, and B. Li: JOM, 2015, vol. 67, pp. 1459–2167.

    Article  CAS  Google Scholar 

  31. J.E. Olsen and S. Cloete: in International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 2009, pp. 1–5.

  32. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw: Prog. Comput. Fluid Dyn., 2009, vol. 9, pp. 345–56.

    Article  Google Scholar 

  33. Y. Liao and D. Lucas: Chem. Eng. Sci., 2009, vol. 64, pp. 3389–3406.

    Article  CAS  Google Scholar 

  34. W. Chen, L. Zhang, Q. Ren, Y. Ren, and W. Yang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1446–61.

    Article  Google Scholar 

  35. Z. Hu, Y. Ci, and Z. Xie: ISIJ Int., 2011, vol. 51, pp. 1674–81.

    Article  CAS  Google Scholar 

  36. H. Huang, M. Yan, J. Sun, and F. Du: Ironmak. Steelmak., 2018, vol. 45, pp. 626–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Young Elite Scientist Sponsorship Program by China Association for Science and Technology [Grant No. YESS20200210] and the National Natural Science Foundation of China [Grant No. U1860205]. They also extend their special thanks to the WISDRI Engineering Technology Co., Ltd. for providing the plant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, C., Cheng, G. et al. Numerical Understanding of Electromagnetic Influence on Fluctuation Behavior at Slag/Steel Interface During LF Refining Process. Metall Mater Trans B 55, 626–636 (2024). https://doi.org/10.1007/s11663-023-02982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02982-3

Navigation