Skip to main content
Log in

Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\( \varepsilon \) :

Specific stirring energy (W/t)

\( k_{\text{m}} \) :

Kinetic constant (s−1)

h :

Injection depth of argon gas (m)

h v :

Steel depth (m)

\( d_{\text{v}} \) :

Diameter of the steel bath (m)

\( Q \) :

Gas flow rate (Nm3/min)

R :

Gas constant (8.314 J/(K·mol))

\( T \) :

Steel temperature (K)

\( T_{\text{n}} \) :

Argon gas temperature (K)

\( W_{\text{m}} \) :

Weight of the molten steel (t)

\( P_{0} \) :

Atmospheric pressure (Pa)

\( P_{\text{bottom}} \) :

Pressure at the bottom of the ladle (Pa)

\( A_{\text{top}} \) :

Area of the top surface

\( N \) :

Number of porous plugs

\( M \) :

Elements [Al], [Si], [Mn], [Fe], and [S] in steel

\( MO_{\text{n}} \) :

Oxides in slag

\( \left[ {{\text{wt}}\;{\text{pct}}\;M} \right] \) :

Mass fraction of elements M in liquid steel

\( \left( {{\text{wt}}\;{\text{pct }}MO_{\text{n}} } \right) \) :

Mass fraction of species \( MO_{\text{n}} \) in slag

\( M_{\text{M}} \) :

Atomic weight of M (g/mol)

\( M_{{{\text{MO}}_{n} }} \) :

Molecular weight of MOn (g/mol)

\( J_{\text{M}} \) :

Molar flux density (kmol/(m2·s))

\( m_{\text{m}} \) :

Mass transfer coefficient of species in liquid steel (m/s)

\( m_{\text{s}} \) :

Mass transfer coefficient of species in slag (m/s)

\( m_{\text{eff,M}} \) :

Overall mass transfer coefficient of species (m/s)

\( \rho_{\text{m}} \) :

Density of liquid steel (kg/m3)

\( \rho_{\text{s}} \) :

Density of slag (kg/m3)

\( A \) :

Interfacial area between slag and steel phases (m2)

\( V \) :

Steel volume in the interfacial region (m3)

\( V_{\text{m}} \) :

Total steel volume (m3)

\( V_{\text{s}} \) :

Total slag volume (m3)

\( L_{\text{M}} \) :

Interfacial distribution ratio of element M at equilibrium

\( K_{\text{M}} \) :

Equilibrium constant

\( V_{\text{M}} \) :

Removal rate of elements M in steel (wt pct/s)

D m :

Diffusion coefficient of species in liquid steel (m2/s)

D s :

Diffusion coefficient of species in slag (m2/s)

\( \varepsilon_{\text{l}} \) :

Turbulent energy dissipation rate (m2/s3)

\( \nu \) :

Kinematic viscosity (m2/s)

\( a_{i} \) :

Activity of species i in liquid steel

\( \gamma_{i} \) :

Activity coefficient of the oxides in slag

\( C_{\text{S}} \) :

Sulfide capacity

\( f_{\text{S}} \) :

Activity coefficient of sulfur in liquid steel

\( a_{\text{O}}^{*} \) :

Activity of oxygen at slag-steel interface

\( {{\varLambda }} \) :

Optical basicity of slag

References

  1. P.G. Jönsson, L. Jonsson and S.C. Du: ISIJ Int., 1997, vol. 37, pp. 484-91.

    Article  Google Scholar 

  2. P.G. Jönsson and L.T.I. Jonsson: ISIJ Int., 2001, vol. 41, pp. 1289-302.

    Article  Google Scholar 

  3. J.H. Shin, Y.S. Chung and J.H. Park: Metallur. and Mater. Trans. B, 2017, vol. 48, pp. 46-59.

    Article  Google Scholar 

  4. A. Harada, N. Maruoka, H. Shibata and S.Y. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2110-17.

    Article  Google Scholar 

  5. D. Roy, P.C. Pistorius and R.J. Fruehan: Metallur. and Mater. Trans. B, 2013, vol. 44, pp. 1086-94.

    Article  Google Scholar 

  6. A.N. Conejo, F.R. Lara, M.M. Hernandez and R.D. Morales: Steel Res. Int., 2007, vol. 78, pp. 141-50.

    Article  Google Scholar 

  7. L. Jonsson, S.C. Du and P. Jönsson: ISIJ Int., 1998, vol. 38, pp. 260-67.

    Article  Google Scholar 

  8. M.A.T. Andersson, L.T.I. Jonsson and P.G. Jönsson: ISIJ Int., 2000, vol. 40, pp. 1080-88.

    Article  Google Scholar 

  9. W.T. Lou and M.Y. Zhu: ISIJ Int., 2015, vol. 55, pp. 961-69.

    Article  Google Scholar 

  10. W.T. Lou and M.Y. Zhu: Metallur. and Mater. Trans. B, 2014, vol. 45, pp. 1706-22.

    Article  Google Scholar 

  11. E.T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials, David Brown Book Company, London, 1996, pp. 245-96.

    Google Scholar 

  12. J. Peter, K.D. Peaslee, D.G. Robertson and B.G. Thomas: Urbana, 2005, vol. 51, pp. 61801.

    Google Scholar 

  13. K. Yonezawa and K. Schwerdtfeger: Metallur. and Mater. Trans. B, 1999, vol. 30, pp. 411-18.

    Article  Google Scholar 

  14. K. Krishnapisharody and G.A. Irons: Metallur. and Mater. Trans. B, 2006, vol. 37, pp. 763-72.

    Article  Google Scholar 

  15. L.M. Li and B.K. Li: JOM, 2016, vol. 68, pp. 2160-69.

    Article  Google Scholar 

  16. K.J. Graham and G.A. Irons: Iron Steel Technol., 2009, vol. 6, pp. 164-73.

    Google Scholar 

  17. P.E. Anagbo and J.K. Brimacombe: Iron and steelmaker, 1988, vol. 11, pp. 41.

    Google Scholar 

  18. F.Z. Ji, A.M. Smith, A.H. Thomas, Z.S. Li and W. Tiekink: Materials Science & Technology Conference and Exhibition 2016, Salt Lake City, 2016, pp. 325–34.

  19. H. Liu, Z. Qi and M. Xu: Steel Res. Int., 2011, vol. 82, pp. 440-58.

    Article  Google Scholar 

  20. S.W.P. Cloete, J.J. Eksteen and S.M. Bradshaw: Prog. Comput. Fluid Dyn., 2009, vol. 9, pp. 345-56.

    Article  Google Scholar 

  21. A. Pitts-Baggett: Doctoral dissertation, The University of Alabama, 2017.

  22. V. Posch, P. Miceli, W. Pluschkell and H. Lachmund: Secondary steelmaking-Desulphurisation of liquid steel with refining top slags, European Communities, Belgium, 2002, pp. 38–9. ISBN: 92-894-4279-4.

  23. K.J. Graham: Doctoral dissertation, McMaster University, 2008.

  24. M. Andersson, M. Hallberg, L. Jonsson and P. Jönsson: Ironmak. and Steelmak., 2002, vol. 29, pp. 224-32.

    Article  Google Scholar 

  25. G.G. Hatch and J. Chipman: J. Met., 1949, vol. 1, pp. 274-84.

    Google Scholar 

  26. R. Tsujino, J. Nakashima, M. Hirai and Y. Yamada: ISIJ Int., 1989, vol. 29, pp. 92-5.

    Article  Google Scholar 

  27. E. Shibata, H.P. Sun and K. Mori: Metallur. and Mater. Trans. B, 1999, vol. 30, pp. 279-86.

    Article  Google Scholar 

  28. J.E. Olsen and S. Cloete: Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, 2009, pp. 1–6.

  29. ANSYS FLUENT 17.1: User’s Guide. ANSYS, Inc.

  30. P.J. O’Rourke: Doctoral dissertation, Princeton University, 1981.

  31. S. Kitamura, T. Kitamura, K. Shibata, Y. Mizukami, S. Mukawa and J. Nagakawa: ISIJ Int., 1991, vol. 31, pp. 1322-28.

    Article  Google Scholar 

  32. F.P. Calderon, N. Sano and Y. Matsushita: Metall. Trans. B, 1971, vol. 2B, pp. 3325-32.

    Article  Google Scholar 

  33. M. Kawakami, S. Yokoyama, K. Takagi, M. Nishimura and J.S. Kim: ISIJ Int., 1997, vol. 5, pp. 425-31.

    Article  Google Scholar 

  34. P. Protopapas, H.C. Andersen and N.A.D. Parlee: J. Chem. Phys., 1973, vol. 59, pp. 15-25.

    Article  Google Scholar 

  35. S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 2-11.

    Article  Google Scholar 

  36. N. El-Kaddah and J. Szekely: Ironmak. and Steelmak., 1981, vol. 2, pp. 269-78.

    Google Scholar 

  37. H. Ohta and H. Suito: Metallur. and Mater. Trans. B, 1998, vol. 29, pp. 119-29.

    Article  Google Scholar 

  38. M.A.T. Andersson, P.G. Jönsson and M. Hallberg: Ironmak. and Steelmak., 2000, vol. 27, pp. 286-93.

    Article  Google Scholar 

  39. P. Sulasalmi, A. Krn, T. Fabritius and J. Savolainen: ISIJ Int., 2009, vol. 49, pp. 1661-67.

    Article  Google Scholar 

  40. R.W. Young, J.A. Duffy, G.J. Hassall and Z. Xu: Ironmak. and Steelmak., 1992, vol. 19, pp. 201-19.

    Google Scholar 

  41. A. Harada, N. Maruoka, H. Shibata and S.Y. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2118-25.

    Article  Google Scholar 

  42. Q. Cao, A. Pitts, and L. Nastac: Ironmak. and Steelmak., published online, December 7, 2016, pp. 1–8, http://dx.doi.org/10.1080/03019233.2016.1262574.

  43. Q. Cao and L. Nastac: TMS 2018 Annual Meeting & Exhibition Proceedings, Phoenix, 2018.

  44. C. Gross, R.B. Mahapatra, W.W. Blejde and S.L. Wigman: U.S. Patent 6547849, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurentiu Nastac.

Additional information

Manuscript submitted August 21, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Nastac, L., Pitts-Baggett, A. et al. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach. Metall Mater Trans B 49, 988–1002 (2018). https://doi.org/10.1007/s11663-018-1234-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1234-7

Keywords

Navigation