Skip to main content
Log in

Slag Corrosion Behavior of Novel Lightweight Magnesia Castable in a High-Basicity Slag: Role of Micropores and Nanosized Zirconia

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study examined the effects of micropores and nanosized zirconia (ZrO2) addition in a novel lightweight magnesia castable on the slag resistance. To this end, static and rotating finger tests were conducted to investigate the degradation of the novel lightweight and convectional fused magnesia castables in a high-basicity slag. A 3D transient numerical model was also established to assess wall shear stress distribution in the rotating finger tests. The corrosion process of the lightweight magnesia castable could be subdivided into the following three stages. In Stage 1, the slag penetrated into the castable through cracks and dissolved components, destroying the castable’s structure and reducing its strength. In Stage 2, wear and peeling occurred, and the weight of the castable decrease a nearly constant rate. In Stage 3, the shear stress dropped with the castable diameter reduction, and corrosion rate decreased, and the penetration and dissolution in Stage 1 become restrictive link again. The analysis revealed the effects of micropores and nanosized ZrO2 on the slag penetration and microstructure evolution: micropores alleviated cracks and absorbed slag, and the formed CaZrO3-ZrO2 provided stronger bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Q.F. Wang, H.F. Yin, Y. Tang, H.D. Yuan, X.H. Ren, Y.L. Xin, and Y.C. Liu: Int. J. Appl. Ceram. Technol., 2020, vol. 17(2), pp. 598–605.

    Article  Google Scholar 

  2. V.A. Abyzov: Procedia Eng., 2016, vol. 150, pp. 1440–45.

    Article  CAS  Google Scholar 

  3. Y.H. Liang, A. Huang, X.W. Zhu, H.Z. Gu, and L.P. Fu: Ceram. Int., 2015, vol. 41(6), pp. 8149–54.

    Article  CAS  Google Scholar 

  4. C. Jie, H. Liu, Z.F. Wang, X.T. Wang, and Y. Ma: Ceram. Int., 2021, vol. 47(6), pp. 7880–87.

    Article  CAS  Google Scholar 

  5. Q.D. Hou, X.D. Luo, Z.P. Xie, Y.Z. Li, D. An, and J.J. Li: Int. J. Appl. Ceram. Technol., 2020, vol. 17(6), pp. 2629–37.

    Article  CAS  Google Scholar 

  6. E.M. Urazaeva, MKh. Rumi, Sh.P. Nurmatov, Sh.K. Irmatova, Sh.A. Fayziev, E.P. Mansurova, and M.A. Zufarov: Refract. Ind. Ceram., 2021, vol. 62(3), pp. 299–304.

    Article  CAS  Google Scholar 

  7. L.P. Fu, Y.S. Zou, A. Huang, H.Z. Gu, and H.W. Ni: J. Am. Ceram. Soc., 2019, vol. 102(6), pp. 3705–14.

    Article  CAS  Google Scholar 

  8. M.K. Mahapatra: Int. J. Appl. Ceram. Technol., 2020, vol. 17(6), pp. 606–15.

    Article  CAS  Google Scholar 

  9. C. Reynaert, E. Śnieżek, and J. Szczerba: Ceram-Silik., 2020, vol. 64(3), pp. 278–88.

    Article  CAS  Google Scholar 

  10. X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, and J.K. Yun: J. Iron Steel Res. Int., 2021, vol. 28, pp. 38–45.

    Article  CAS  Google Scholar 

  11. C. Yuan, Y. Liu, G.Q. Li, Y.F. Tian, C. Tan, Y.S. Zou, A. Huang, and Y.W. Li: Ceram. Int., 2022, vol. 48(4), pp. 5139–44.

    Article  CAS  Google Scholar 

  12. X.M. Ren, B.Y. Ma, L.L. Wang, G.Q. Liu, and J.K. Yu: Ceram. Int., 2021, vol. 47(22), pp. 31130–137.

    Article  CAS  Google Scholar 

  13. Y.S. Zou, A. Huang, R.F. Wang, L.P. Fu, H.Z. Gu, and G.Q. Li: Corros. Sci., 2020, vol. 167, p. 108517.

    Article  CAS  Google Scholar 

  14. W.D. Peng, Z. Chen, W. Yan, S. Schafföner, G.Q. Li, Y.W. Li, and C.J. Jia: Constr. Build. Mater., 2021, vol. 291, p. 123388.

    Article  CAS  Google Scholar 

  15. M. Guo, S. Parada, P.T. Jones, E. Boydens, J.V. Dyck, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2009, vol. 29(6), pp. 1053–060.

    Article  CAS  Google Scholar 

  16. W.E. Lee and S. Zhang: Int. Mater. Rev., 1999, vol. 44(3), pp. 77–104.

    Article  CAS  Google Scholar 

  17. L.G. Chen, S.L. Li, P.T. Jones, M.X. Guo, B. Blanpain, and A. Malfliet: J. Eur. Ceram. Soc., 2016, vol. 36(8), pp. 2119–132.

    Article  CAS  Google Scholar 

  18. K. Zhou, H.J. Hoh, X. Wang, L.M. Keer, J.H.L. Pang, B. Song, and Q.J. Wang: Mech. Mater., 2013, vol. 60, pp. 144–58.

    Article  Google Scholar 

  19. A. Gupta, S. Goyal, K.A. Padmanabhan, and A.K. Singh: Int. J. Adv. Manuf. Technol., 2015, vol. 77, pp. 565–72.

    Article  Google Scholar 

  20. Q. Meng, G.S. Frankel, H.O. Colijn, and S.H. Goss: Nature, 2003, vol. 424, pp. 389–90.

    Article  CAS  Google Scholar 

  21. S. Serena, M.A. Sainz, and A. Caballero: J. Eur. Ceram. Soc., 2004, vol. 24(8), pp. 2399–406.

    Article  CAS  Google Scholar 

  22. E.Y. Sako, M.A.L. Braulio, and V.C. Pandolfelli: Ceram. Int., 2012, vol. 38(3), pp. 2177–185.

    Article  CAS  Google Scholar 

  23. A.P. Luz, A.G.T. Martinez, M.A.L. Braulio, and V.C. Pandolfelli: Ceram. Int., 2011, vol. 37(4), pp. 1191–201.

    Article  CAS  Google Scholar 

  24. S. Ghasemi-Kahrizsangi, H.G. Dehsheikh, and M. Boroujerdnia: Mater. Chem. Phys., 2017, vol. 189, pp. 230–36.

    Article  CAS  Google Scholar 

  25. C.W. Andrés, M.N. Moliné, S. Camelli, and A.G.T. Martinez: Ceram. Int., 2020, vol. 46(15), pp. 24495–4503.

    Article  Google Scholar 

  26. Q. Wang, C. Tan, A. Huang, W. Yan, H.Z. Gu, Z. He, and G.Q. Li: Metall. Mater. Trans. B., 2021, vol. 52B(3), pp. 1344–356.

    Article  Google Scholar 

  27. R. Singh, D. Mazumdar, and A.K. Ray: ISIJ Int., 2008, vol. 48(7), pp. 1033–035.

    Article  CAS  Google Scholar 

  28. M.I.H. Siddiqui and P.K. Jha: Steel Res Int., 2015, vol. 86(7), pp. 799–807.

    Article  CAS  Google Scholar 

  29. Q. Wang, C. Tan, A. Huang, W. Yan, H.Z. Gu, Z. He, and G.Q. Li: Metall. Mater. Trans. B., 2021, vol. 52(5), pp. 3265–275.

    Article  CAS  Google Scholar 

  30. Y.S. Zou, H.Z. Gu, A. Huang, L.P. Fu, and G.Q. Li: Ceram. Int., 2020, vol. 46(10), pp. 16956–6965.

    Article  CAS  Google Scholar 

  31. Y.S. Zou, H.Z. Gu, A. Huang, and L.P. Fu: Metall. Mater. Trans. A., 2020, vol. 51(10), pp. 5328–338.

    Article  CAS  Google Scholar 

  32. J.L. Svantesson, B. Glaser, M. Ersson, J.F. White, M. Imris, and P.G. Jönsson: Ironmak. Steelmak., 2021, vol. 48(5), pp. 607–18.

    Article  CAS  Google Scholar 

  33. Q. Wang, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54(2), pp. 311–20.

    Article  Google Scholar 

  34. I. Jung and M.V. Ende: Metall Mater. Trans. B, 2020, vol. 51B(4), pp. 1851–874.

    Article  Google Scholar 

  35. K. Das, A. Agrawl, A.S. Reddy, and R.V. Ramna: Trans. Indian Inst. Met., 2021, vol. 74, pp. 419–28.

    Article  CAS  Google Scholar 

  36. T. Talapaneni, N. Yedla, S. Pal, and S. Sarkar: Metall Mater. Trans. B, 2020, vol. 48B(3), pp. 1450–462.

    Article  Google Scholar 

  37. C.H. Lee: Eng. Appl. Comp. Fluid., 2018, vol. 12(1), pp. 261–69.

    Google Scholar 

  38. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, and G.Q. Li: Metall. Mater. Trans. B., 2020, vol. 51, pp. 276–92.

    Article  CAS  Google Scholar 

  39. M. Reinmöller, M. Klinger, E. Thieme, and B. Meyer: Fuel Process. Technol., 2016, vol. 149, pp. 218–30.

    Article  Google Scholar 

  40. F.H. Wittmann: Sadhana, 2002, vol. 27(4), pp. 413–23.

    Article  Google Scholar 

  41. J.P. Zhang, H.Q. Tan, J.Z. Pei, T. Qu, and W.L. Liu: Int. J. Geomech., 2019, vol. 19(4), pp. 06019005.

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant No. U1860205) and the Young Elite Scientist Sponsorship Program by the China Association for Science and Technology [Grant No. YESS20200210]. The authors also express their gratitude to Dr. Yongshun Zou and Mr. Cheng Yuan from the Wuhan University of Science and Technology for their helpful contribution to the preparation of lightweight MgO.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Liu, C., Fu, L. et al. Slag Corrosion Behavior of Novel Lightweight Magnesia Castable in a High-Basicity Slag: Role of Micropores and Nanosized Zirconia. Metall Mater Trans B 54, 1511–1523 (2023). https://doi.org/10.1007/s11663-023-02777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02777-6

Navigation