Skip to main content
Log in

Formation Mechanism of In Situ Intergranular CaZrO3 Phases in Sintered Magnesia Refractories

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sintered magnesia refractories combined by in situ intergranular CaZrO3 phases were synthesized using natural MgO-containing natural minerals with CaO and SiO2 impurities and nano-sized ZrO2 additive. A homogenous distribution of intergranular CaZrO3, independent from the intergranular CaO-MgO-SiO2 phases, was formed in situ within the sintered magnesia aggregates by introducing 0.75 wt pct nano-sized ZrO2 into the magnesite. The formation mechanism of the in situ intergranular CaZrO3 phases was determined. The nano-sized ZrO2 was introduced and uniformly distributed at grain boundaries of the magnesia due to the micron-nano-sized particles composite system and wetting grinding process. Then the CaO in impurities were prior to SiO2 to react with the ZrO2 for generating CaZrO3 at the grain boundaries by increasing sintering temperature. Nevertheless, the nano-sized ZrO2 particles were encapsulated in the MgO crystallites with similar particle size decomposed from brucite and prevented from reacting with CaO impurities in magnesite. The mixing homogeneity of magnesite particles and ZrO2 particles and the direct contact between ZrO2 and CaO impurities in magnesite has a crucial effect on the formation of intergranular CaZrO3 phases. Furthermore, the intergranular CaZrO3 phases could enhance the bonding of magnesia grains and have great potential for improving the service performance of magnesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. GY Wu, W Yan, S Schafföner, YJ Dai, BQ Han, TQ Li, SB Ma, N Li, GQ Li: J. Alloys Compd., 2019, vol. 796, pp. 131-137.

    Article  CAS  Google Scholar 

  2. [2] Y.S. Zou, A. Huang, H.Z. Gu, L.P. Fu and G.Q. Li: Corros. Sci., 2020, vol. 167, pp. 108517.

    Article  CAS  Google Scholar 

  3. [3] W.X. Zhang, A. Huang, Y.S. Zou, H.Z. Gu, L.P. Fu and G.Q. Li: J. Am. Ceram. Soc., 2020, vol. 103, pp. 2128-2136.

    Article  CAS  Google Scholar 

  4. [4] X. Lin, W. Yan and N. Li: Sci. Sinter., 2016, vol. 48, pp. 147-155.

    Article  CAS  Google Scholar 

  5. [5] E. Litovsky, T. Gambaryan-Roisman, M. Shapiro and A. Shavit: J. Am. Ceram. Soc., 1999, vol. 82, pp. 994-1000.

    Article  CAS  Google Scholar 

  6. [6] Y.J. Dai, Y.W. Li, S.L. Jin, H. Harmuth and X.F. Xu: J. Am. Ceram. Soc., 2019, vol. 103, pp. 1956-1969.

    Article  Google Scholar 

  7. [7] H.R. Zargar, M.R. Bayati, H.R. Rezaie, F. Golestani-Fard, R. Molaei, S. Zanganeh and A. Kajbafvala: J. Alloys Compd., 2010, vol. 507, pp. 443-447.

    Article  CAS  Google Scholar 

  8. [8] E. Rodríguez, F.H. Moreno, J.A. Aguilar-Martínez, A.E. Montes-Mejia, J.J. Ruiz-Valdes, R. Puente-Ornelas and J.E. Contreras: Ceram Int., 2016, vol. 42, pp. 8445-8452.

    Article  Google Scholar 

  9. [9] C. Barad, G. Kimmel, D. Shamir, K. Hirshberg and Y. Gelbstein: J. Alloys Compd., 2019, vol. 801, pp.375-380.

    Article  CAS  Google Scholar 

  10. [10] S. Serena, A. Caballero, M.A. Sainz, P. Convert, J. Compo and X. Turrillas: J. Am. Ceram. Soc., 2004, vol. 87, pp. 1706-1713.

    Article  CAS  Google Scholar 

  11. [11] A. Silva, F. Booth, L. Garrido, E. Aglietti, P. Pena and C. Baudin: J. Eur. Ceram. Soc., 2017, vol.37, pp. 297-303.

    Article  CAS  Google Scholar 

  12. [12] S. Serena, M.A. Sainz, S. De Aza and A. Caballero: J. Am. Ceram. Soc., 2004, vol. 87, pp. 2268-2274.

    Article  CAS  Google Scholar 

  13. [13] E.A. Rodríguez, G.A. Castillo, T.K. Das, R. Puente-Ornelas, Y. Gonzalez, A.M. Arato and J.A. Aguilar-Martinez: J. Eur. Ceram. Soc., 2013, vol.33, pp. 2767-2774.

    Article  Google Scholar 

  14. [14] S. Serena, M.A. Sainz and A. Caballero: J. Eur. Ceram. Soc., 2004, vol. 24, pp. 2399-2406.

    Article  CAS  Google Scholar 

  15. [15] E.M.M. Ewais and I.M.I. Bayoumi: Ceram. Int., 2018, vol.44, pp. 9236-9246.

    Article  CAS  Google Scholar 

  16. [16] M. Chen, C.Y. Lu and J.K. Yu: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 4633-4638.

    Article  CAS  Google Scholar 

  17. [17] P.G. Lampropoulou, C.G. Katagas and D.C. Papamantellos: J. Am. Ceram. Soc., 2005, vol. 88, pp. 1568-1574.

    Article  CAS  Google Scholar 

  18. [18] J.W. Nelson and I.B. Cutler: J. Am. Ceram. Soc., 1958, vol.41, pp. 406-409.

    Article  CAS  Google Scholar 

  19. [19] C. Ghosh, S. Sinhamahapatra and H.S. Tripathi: Int. J. Appl. Ceram. Technol., 2019, vol. 16, pp. 410-417.

    Article  CAS  Google Scholar 

  20. [20] Y.S. Zou, H.Z. Gu, A. Huang, L.P. Fu and G.Q. Li: Mater. Des., 2020, vol. 186, pp. 108326.

    Article  CAS  Google Scholar 

  21. [21] C.H. Peng, N. Li and B.Q. Han: Sci. Sinter., 2009, vol. 41, pp. 11-17.

    Article  CAS  Google Scholar 

  22. [22] R. Kusiorowski, J. Wojsa, B. Psiuk and T. Wala: Ceram. Int., 2016, vol. 42, pp. 11373-11386.

    Article  CAS  Google Scholar 

  23. [23] Y.S. Zou, H.Z. Gu, A. Huang, L.P. Fu and G.Q. Li: Ceram. Int., 2020, vol. 46, pp. 16956-16965.

    Article  CAS  Google Scholar 

  24. [24] P. Stoch, J. Szczerba, J. Lis, D. Madej and Z. Pedzich: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 665-670.

    Article  CAS  Google Scholar 

  25. [25] S.B. Xie, Y.B. Li, J.F. Guan and Z.L. Wei: Multipurpose Utilization of Mineral Resources, 2019, vol. 3, pp. 71-73.

    Google Scholar 

  26. [26] J. Green: J. Mater. Sci., 1983, vol. 18, pp. 637-651.

    Article  CAS  Google Scholar 

  27. [27] Y. Xie, Z. Chen, Y.L. Wu, M.D. Yang, L.Q. Wei and H.S. Hu: Ceram. Int., 2014, vol. 40, pp. 16543-16547.

    Article  CAS  Google Scholar 

  28. [28] R.T. Li, W. Pan and M. Sano: Metall. Mater. Trans. B, 2003, vol.34, pp. 433-437.

    Google Scholar 

  29. [29] L.P. Fu, A. Huang, H.Z. Gu and H.W. Ni: Ceram. Int., 2018, vol. 44, pp. 17885-17894.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. U1908227, U1860205 and 51802231), the Special Project of Central Government for Local Science and Technology Development of Hubei Province (2019ZYYD076), the China Postdoctoral Science Foundation (2018T110811), and the Recruitment Program of High-End Foreign Experts of the State Administration of Foreign Experts Affairs (GDW20174200160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ao Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 2, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Gu, H., Huang, A. et al. Formation Mechanism of In Situ Intergranular CaZrO3 Phases in Sintered Magnesia Refractories. Metall Mater Trans A 51, 5328–5338 (2020). https://doi.org/10.1007/s11661-020-05919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05919-6

Navigation