Skip to main content
Log in

FactSage Studies to Identify the Optimum Slag Regime for Blast Furnace Operation

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Decreasing the slag rate can lead to a lower fuel rate and higher productivity in the blast furnace (BF). Indian iron ore is known to have adverse alumina–silica ratio. Therefore, to reduce the slag rate there is a need to either remove alumina from the iron ore or to add more silica to dilute the effect of alumina in slag. The latter would increase the slag rate, while the other option is not cost effective. The slag rate can be reduced by operating the BF at high Al2O3%. However, high Al2O3% in BF slag has an adverse impact on liquidus temperature and viscosity. Therefore, there is a prerequisite to identify a slag regime that has low liquidus temperature and low viscosity. In the present work, the FactSage studies of 275 no. of BF slags at wide chemistry variation (Al2O3 = 17–25%, MgO = 8–16%, slag basicity = 0.96–1.2) are conducted to calculate the liquidus temperature and viscosity of slag. Based on the FactSage calculation, it has been identified that 12% MgO coupled with slag basicity ~ 1.0 is the most favorable composition for 22% Al2O3 in slag operation to achieve a lower liquidus temperature and lower viscosity which is essential for efficient BF operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raghukumar C, Tripathy S K, and Mohanan S, Int J Min Eng Miner Process 1 (2012) 94.

    Article  Google Scholar 

  2. Mahiuddin S, Bandopadhyay S, and Baruah J N, Int J Miner Process 11 (1989) 285.

    Article  Google Scholar 

  3. Hanumantha Rao K, and Narasimhan K S, Int J Miner Process 14 (1985) 67.

    Article  Google Scholar 

  4. Gujraj B, Sharma J P, Baldawa A, Arora S, Prasad N, and Biswas A K, Int J Miner Process 11 (1983) 285.

    Article  Google Scholar 

  5. Padhi M, Vakamalla T R, and Mangadody N, in: Mineral Processing Technology, 12–14 March 2015, Vishakapatnam, India.

  6. Mohanty S, and Das B, Miner Process Extract Metall Rev 31 (2010) 86.

    Article  CAS  Google Scholar 

  7. Das B, Mohapatra B K, Reddy P S R, and Das S, Powder Handl Process 7 (1995) 41.

    Google Scholar 

  8. Shankar A, Görnerup M, Lahiri A K, and Seetharaman S, Ironmaking Steelmaking 34 (2007) 477

    Article  CAS  Google Scholar 

  9. Shankar A. Ironmaking Steelmaking 33 (2006) 413

    Article  CAS  Google Scholar 

  10. Park J H, Kim H, and Min D J, Metall Mater Trans B 39B (2008) 150.

    Article  CAS  Google Scholar 

  11. Iida T, Sakai H, Kita Y, and Shigeno K, ISIJ Int 40 (2000) S110.

    Article  CAS  Google Scholar 

  12. Iida T, and Kita Y, Rep ISIJ Meet 15 (2002) 203.

    Google Scholar 

  13. Urbain G, Steel Res 58 (1987) 111.

    Article  CAS  Google Scholar 

  14. Mills K C, and Sridhar S, Ironmaking Steelmaking 26 (1999) 262

    Article  CAS  Google Scholar 

  15. Ray H S, and Pal S, Ironmaking Steelmaking 31 (2004) 125

    Article  CAS  Google Scholar 

  16. Wang J L, Zhang K X J, and Liu Z J. Metall Res Technol 114 (2017) 205.

    Article  Google Scholar 

  17. Gao Y M, Wang S B, Hong C, Ma X J, and Yan F, Int J Miner Metall Mater 21 (2014) 353.

    Article  CAS  Google Scholar 

  18. Zhang X F, Jiang T, Xue X X, and Hu B S, Steel Res Int 87 (2016) 1

    Article  Google Scholar 

  19. Xu J-F, Zhang J-Y, Jie C, Ruan F, and Chou K-C, Ironmaking Steelmaking 38 (2011) 329

    Article  Google Scholar 

  20. Ghosh D, Krishnamurthy V A, and Sankaranarayanan S R, J Min Metall B Metall 46 (2010) 41

    Article  CAS  Google Scholar 

  21. Jiao K, Zhang J, Liu Z, and Chen C, High Temp Mater Proc 38 (2019) 354

    Article  CAS  Google Scholar 

  22. Osborn E F, DeVries R C, Gee K H, J Met 6 (1954) 33

    CAS  Google Scholar 

  23. Dong J, Zhang D, and Gan L, Ironmaking Steelmaking (2017). https://doi.org/10.1080/03019233.2017.1340545

    Article  Google Scholar 

  24. Agrawal A, Das K, Singh B K, Singh R S, Tripathi V R, Kundu S, Padmapal R V R, and Singh M K, Ironmaking Steelmaking 47 (2020) 238

    Article  CAS  Google Scholar 

  25. Agrawal A, Singh R S, and Singh M K, Ironmaking Steelmaking 47 (2020) 271

    Article  CAS  Google Scholar 

  26. Liu H, Qin Y, Yang Y, Zhang Q, and Deng N, J Chem 2018 (2018) 9502304

    Google Scholar 

  27. Denis S, Jiang C, Eugene J, and Hayesa P, in: The 5th BAJC Conference 2017, Baosteel-Australia Joint Research and Development Centre (BAJC), February 20, 2017Gold Coast.

  28. Bale C W, Belisle E, Chartrand P, Decterov S A, Eriksson G, Gheribi A E, and Van Ende M A, Calphad 54 (2016) 35.

    Article  CAS  Google Scholar 

  29. Harvey J, and Gheribi A E, Metall Mater Trans B 45 (2014) 307.

    Article  CAS  Google Scholar 

  30. Hidayat T, Shishin D, Decterov S A, and Jak E, Calphad 56 (2017) 58.

    Article  CAS  Google Scholar 

  31. Jung I-H. Calphad 34 (2010) 332

    Article  CAS  Google Scholar 

  32. Yao L, Ren S, Wang X, Liu Q, Dong L, Yang J, and Liu J, Steel Res Int 87 (2016) 241.

    Article  CAS  Google Scholar 

  33. Yan Z, Lv X, Zhang J, Qin Y, and Bai C, Can Metall Q 55 (2016) 186.

    Article  CAS  Google Scholar 

  34. Yao L, Ren S, Liu G, Liu Q, Kong M, and Yang J, Metall Res Technol 112 (2015) 602

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Tata Steel for providing us the opportunity to carry out the above work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Agrawal.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Agrawal, A., Reddy, A.S. et al. FactSage Studies to Identify the Optimum Slag Regime for Blast Furnace Operation. Trans Indian Inst Met 74, 419–428 (2021). https://doi.org/10.1007/s12666-020-02144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02144-y

Keywords

Navigation