Skip to main content
Log in

Zn Fuming Kinetics in a Bubble-Stirred Molten Slag Bath

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics of Zn fuming from a fayalite-based slag through stirring with air-CH4 gas mixtures have been studied by laboratory-scale experiments. The influence of process parameters including carbon addition, gas flowrate, slag composition and temperature on the Zn fuming rate is identified. A kinetic model of Zn fuming in a bubble-stirred bath is developed according to the understanding of the rate-controlling step of the fuming process, and the volumetric mass transfer coefficient kla is obtained by fitting with experimental data. The theoretical kla is further calculated to deepen the understanding of the gas flow rate effect on the fuming kinetics. The results indicate that the fuming process consists of an unsteady fuming stage and a main fuming stage, and kla in the latter agrees well with the Zn fuming kinetic model. The mass transfer of ZnO in the liquid phase, which is closely related to the gas flow rate, is likely to be the rate-controlling step. The model can be extended to simulate bubble-stirred fuming systems and to optimize the process parameters of laboratory-scale and industrial set-ups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A b :

Slag–gas interface area, m2

a :

Specific gas/liquid interface area, 1/m

C :

Molar concentration, mol/m3

D c :

Bubble column diameter, m

D l :

Diffusion coefficient, m2/s

d o :

Outer diameter of the injection tube, m

d b :

Mean bubble diameter, m

k l :

Mass transfer coefficient, m/s

K e :

Reaction equilibrium constant

M :

Molar mass, mol/kg

n :

Amount of substance, mol

P :

Pressure, bar

Q :

Gas volume flux, L/min

t :

Time, min

U :

Superficial velocity, m/s

u s :

Unhindered rise velocity of small bubbles, m/s

V l :

Slag volume, m3

x :

Weight percentage, wt pct

ρ :

Density, kg/m3

γ :

Activity coefficient

ε :

Gas holdup

σ :

Surface tension, N/s

i :

i species

0:

Variables at time “0”

t :

Variable at time “t

b:

Bubble

l:

Liquid phase

g:

Gas phase

e:

Equilibrium state

trans:

Gas holdup at transition point

lb:

Large-bubble holdup

sb:

Small-bubble holdup

df:

Dense phase

atm:

Atmospheric pressure

References

  1. E. Jak and P. Hayes: Can. Metall. Q., 2002, vol. 41(2), pp. 163–74.

    Article  CAS  Google Scholar 

  2. E. Jak, B. Zhao, P.C. Hayes, S. Degterov, and A.D. Pelton: Metall. Trans. B., 2000, vol. 31B(4), pp. 621–30.

    Article  CAS  Google Scholar 

  3. S. Jahanshahi and S. Wright: Metall. Trans. B., 2017, vol. 48(4), pp. 2057–66.

    Article  CAS  Google Scholar 

  4. R.G. Reddy, V.L. Prabhu, and D. Mantha: High. Temp. Mater. Process., 2002, vol. 21(6), pp. 377–86.

    Article  CAS  Google Scholar 

  5. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: Metall. Trans. B., 2007, vol. 38(1), pp. 13–20.

    Google Scholar 

  6. R.C. Bell, G.H. Turner, and E. Peters: TMS-AIME., 1955, vol. 203, pp. 472–7.

    Google Scholar 

  7. H.H. Kellogg: TMS-AIME., 1967, vol. 239, pp. 1439–49.

    CAS  Google Scholar 

  8. R.J. Grant and L.J. Barnett: in South Australia Conference 1975, Australas. I.M.M., Melbourne, 1975, pp. 247–65.

  9. A.I. Evdokimenko, R.Z. Khobdabergenov, A.P. Sosnin, S.P. Golger, and N.A. Kolesnikov: Soviet J. Non-Ferrous Metals., 1977, vol. 18(11), pp. 62–5.

    Google Scholar 

  10. M.A. Glinkov, A.V. Grechko, J.N. Nevedomskaya, V.V. Kobakhidze, and V.P. Bystrov: Soviet J. Non-Ferrous Metals., 1971, vol. 12(7), pp. 16–9.

    Google Scholar 

  11. E.S. Gnatovskii, A.I. Evdokimenko, V.V. Kotlyarenko, and I.V. Savin: Soviet J. Non-Ferrous Metals., 1970, vol. 11(5), pp. 27–30.

    Google Scholar 

  12. E.N. Mazurchuk, L.G. Lavrov, A.V. Vanyukov, V.Y. Zaitsev, and O.B. Bystrova: Soviet J. Non-Ferrous Metals., 1970, vol. 11(4), pp. 28–31.

    Google Scholar 

  13. R. Suzuki, S. Goto, and K. Azuma: J. Fac. Eng., Univ. Tokyo (B)., 1970, vol. 30(3), pp. 247–87.

    CAS  Google Scholar 

  14. G.G. Richards, J.K. Brimacombe, and G.W. Toop: Metall. Trans. B., 1985, vol. 16B(3), pp. 513–27.

    Article  CAS  Google Scholar 

  15. G.G. Richards and J.K. Brimacombe: Metall. Trans. B., 1985, vol. 16B(3), pp. 529–40.

    Article  CAS  Google Scholar 

  16. S.L. Cockcroft, G.G. Richards, and J.K. Brimacombe: Can. Metall. Q., 1988, vol. 27(1), pp. 27–40.

    Article  CAS  Google Scholar 

  17. S.L. Cockcroft, G.G. Richards, and J.K. Brimacombe: Metall. Trans. B., 1989, vol. 20B, pp. 227–35.

    Article  CAS  Google Scholar 

  18. J. Peter, K.D. Peaslee, D.G.C. Robertson, and B.G. Thomas: Proc. AISTech., 2005, vol. 1, pp. 959–73.

    CAS  Google Scholar 

  19. K.J. Graham and G.A. Irons: Iron Steel Technol., 2009, vol. 6, pp. 164–73.

    CAS  Google Scholar 

  20. A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2110–17.

    Article  CAS  Google Scholar 

  21. M.A. Van Ende and I.H. Jung: Metall. Mater. Trans. B., 2017, vol. 48B(1), pp. 28–36.

    Article  Google Scholar 

  22. P. Yan, L. Pandelaers, L. Machiels, Y. Pontikes, D. Geysen, M. Guo, and B. Blanpain: Min. Process. Extr. Metall., 2015, vol. 124(2), pp. 76–82.

    Article  CAS  Google Scholar 

  23. R. Ding, B. Blanpain, P. Jones, and P. Wollants: Metall. Mater. Trans. B., 2000, vol. 31B(1), pp. 197–206.

    Article  CAS  Google Scholar 

  24. M.A. Van Ende, Y.M. Kim, M.K. Cho, J. Choi, and I.H. Jung: Metall. Mater. Trans. B., 2011, vol. 42B(3), pp. 477–89.

    Article  Google Scholar 

  25. M.A. Van Ende and I.H. Jung: CAMP-ISIJ., 2015, vol. 28, pp. 527–30.

    Google Scholar 

  26. P. Rollbusch, M. Becker, M. Ludwig, A. Bieberle, M. Grünewald, U. Hampel, and R. Franke: Int. J. Multiph. Flow., 2015, vol. 75, pp. 88–96.

    Article  CAS  Google Scholar 

  27. R. Maceiras, E. Álvarez, and M.A. Cancela: Chem. Eng. J., 2010, vol. 163(3), pp. 331–36.

    Article  CAS  Google Scholar 

  28. C. Tang and T.J. Heindel: Chem. Eng. Sci., 2004, vol. 59(3), pp. 623–32.

    Article  CAS  Google Scholar 

  29. B. Van Tran, S.I. Ngo, Y.I. Lim, W. Kim, K.S. Go, and N.S. Nho: Comput. Aided Chem. Eng., 2018, vol. 44, pp. 313–8.

    Article  Google Scholar 

  30. P. Vadász, M. Havlík, and V. Daněk: Cent. Eur. J. Chem., 2006, vol. 4(1), pp. 174–93.

    Google Scholar 

  31. Z. Jin, H. Yang, J. Lv, L. Tong, G. Chen, and Q. Zhang: JOM., 2018, vol. 70(8), pp. 1430–36.

    Article  CAS  Google Scholar 

  32. N. Kantarci, F. Borak, and K.O. Ulgen: Process Biochem., 2005, vol. 40(7), pp. 2263–83.

    Article  CAS  Google Scholar 

  33. R. Krishna and J. Ellenberger: AIChE J., 1996, vol. 42, pp. 2627–34.

    Article  CAS  Google Scholar 

  34. I.G. Reilly, D.S. Scott, T.J.W. De Bruijn, and D. MacIntyre: Can. J. Chem. Eng., 1994, vol. 72, pp. 3–12.

    Article  CAS  Google Scholar 

  35. H.M. Letzel, J.C. Schouten, R. Krishna, and C.M. Van den Bleek: Chem. Eng. Sci., 1999, vol. 54(13–14), pp. 2237–46.

    Article  CAS  Google Scholar 

  36. M. Sano and K. Mori: Trans. JIM., 1976, vol. 17, pp. 344–52.

    Article  Google Scholar 

  37. R. Higbie: Trans. Inst. Chem. Eng., 1935, vol. 31, pp. 365–89.

    CAS  Google Scholar 

  38. C.C. Maneri and H.D. Mendelson: AIChE J., 1968, vol. 14, pp. 295–300.

    Article  CAS  Google Scholar 

  39. W. Duan, Y. Gao, Q. Yu, T. Wu, and Z. Wang: Energy., 2019, vol. 183, pp. 1233–43.

    Article  CAS  Google Scholar 

  40. S. Kara, B.G. Kelkar, Y.T. Shah, and N.L. Carr: Ind. Eng. Chem. Process. Des. Dev., 1982, vol. 21, pp. 584–94.

    Article  CAS  Google Scholar 

  41. K. Koide, A. Takazawa, M. Komura, and H. Matsunga: J. Chem. Eng. Jpn., 1984, vol. 17, pp. 459–66.

    Article  CAS  Google Scholar 

  42. Y.T. Shah, B.G. Kelkar, S.P. Godbole, and W.D. Deckwer: AIChE J., 1982, vol. 28, pp. 353–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support for this research by VLAIO (SIM Vlaanderen SuperMex project).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfu Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Khaliq, A., Blanpain, B. et al. Zn Fuming Kinetics in a Bubble-Stirred Molten Slag Bath. Metall Mater Trans B 53, 1308–1319 (2022). https://doi.org/10.1007/s11663-022-02449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02449-x

Navigation