Skip to main content
Log in

Kinetics of the zinc slag-Fuming Process: part II. mathematical model

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model of zinc slag fuming has been formulated based on the kinetic conception of the process developed in Part I of this paper. Each of the major reaction zones in the furnace — the slag bath where reduction of zinc oxide and ferric oxide takes place and the tuyere gas column where oxidation of coal and ferrous oxide occurs — have been characterized mathematically. The two zones and the water-jacketed furnace wall have been linked by overall heat and mass balances. Insufficient information is available, however, to characterize quantitatively two of the important kinetic processes occurring in the furnace: the division of coal between entrainment in the slag, combustion in the tuyere gas column and bypass; and oxygen utilization. To overcome this problem the model has been fitted to the data from eleven industrial fuming cycles. Consistent values have been obtained for these kinetic parameters over five different fuming operations indicating that the kinetic conception of the process is sound. The results indicate that about 33 pct of the injected coal is entrained in the slag, 55 pet combusts in the tuyere gas column, and 12 pct bypasses the bath completely. Oxygen utilization has been found to be high and can be correlated to bath depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Richards, J. K. Brimacombe, and G. W. Toop:Metall. Trans. B, 1985, vol. 16B, pp. 513–27.

    CAS  Google Scholar 

  2. R.C. Bell, G.H. Trner, and E. Peters:Trans.AIME, 1955, vol. 203, pp. 472–77.

    Google Scholar 

  3. H.H. Kellogg:Trans. AIME, 1967, vol. 239, pp. 1439–49.

    CAS  Google Scholar 

  4. R.J. Grant and L.J. Barnett: inSouth Australia Conference 1975, Australas. I.M.M., Melbourne, 1975, pp. 247–65.

    Google Scholar 

  5. T. A.A. Quarm:Mining Magazine, 1964, vol. 113(2), pp. 114–23.

    Google Scholar 

  6. T. A.A. Quarm:Trans. I.M.M., 1980. vol. 89, pp. C139–44.

    CAS  Google Scholar 

  7. O.A. Sundstrom:J. Metals, 1969, vol. 22(6), pp. 15–21.

    Google Scholar 

  8. V. A. Ivanov, A.M. Intykbaev, V. S. Korbator, and L.I. Varnakov:In: Vyssh. Uchebn. Zaved. Tsvetn. Metal., 1977, pp. 154–56.

  9. M. D. Horton: inPulverized-Coal Combustion and Gasification, L. D. Smoot and D.T. Pratt, eds., Plenum Press, 1979, pp. 133–47.

  10. C. Y. Wen and S. Dutta: inCoal Conversion Technology, C. Y. Wen and ES. Lee, eds., Addison-Wesley, 1979, pp. 57–170.

  11. L. Farias and D. G. C. Robertson: inApplication of Mathematical and Physical Models in the Iron and Steel Industry, 3rd Process Tech- nology Conference, Pittsburgh, PA, ISS-AIME, 1982, pp. 206–20.

    Google Scholar 

  12. G. G. Richards: Ph. D. Thesis, University of British Columbia, 1983.

  13. E.T. Turkdogan:Physical Chemistry of High Temperature Tech- nology, Academic Press, New York, NY. 1980.

    Google Scholar 

  14. O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon, New York, NY, 1979.

    Google Scholar 

  15. K. Azuma, S. Goto, and A. Ogawa:J. Fac. Eng., Univ. of Tokyo, Ser. A.. 1967. vol. 5(1), pp. 54–55.

    Google Scholar 

  16. N.J. Filipovska and H. B. Bell:Trans. I.M.M., 1978, vol. 87, pp. C94–98.

    Google Scholar 

  17. A. W. Richards and D. F. J. Thorne: inPhysical Chemistry of Process Metallurgy, Part 1, G.R. St. Pierre, ed., AIME. Interscience, New York, NY. 1961, pp. 277–91.

    Google Scholar 

  18. C. Bodsworth:J. Iron Steel Inst., 1959. vol. 193, pp. 13–24.

    CAS  Google Scholar 

  19. R. Clift, J. R. Grace, and M. E. Weber:Bubbles, Drops and Particles, Academic Press. New York, NY, 1978.

    Google Scholar 

  20. F. Brenthel and R. Fichte:Metal and Erz, 1943, vol. 40, pp. 81–109.

    CAS  Google Scholar 

  21. F.D. Rictiardson:Physical Chemistry of Melts in Metallurgy, Aca- demic Press. London, 1974, vols. 1 and 2.

    Google Scholar 

  22. K. Mori and K. Suzuki:Trans. ISIJ. 1969, vol. 9, pp. 409–12.

    Google Scholar 

  23. M. P. Borom and J. A. Pask:J. Amer. Ceram. Soc., 1968, vol. 51(9), pp. 490–98.

    Article  CAS  Google Scholar 

  24. Y. Ukyo and K. S. Goto:Metall. Trans. B, 1981, vol. 12B, pp. 449–54.

    Article  CAS  Google Scholar 

  25. D.P. Agarwal and D. R. Gaskell:Metall. Trans. B, 1975, vol. 6B, pp. 263–67.

    CAS  Google Scholar 

  26. F. D. Skinner and L. D. Smoot: inPulverized Coal Combustion and Gasification. L.C. Smoot and D.T. Pratt, eds.. Plenum Press, New York, NY, 1979, pp. 149–67.

    Google Scholar 

  27. D. W. Ashman. J. W. McKelliget and J. K. Brimacombe:Can. Met. Quart., 1981. vol. 20(4), pp. 387–95.

    CAS  Google Scholar 

  28. J. Szekely and N.J. Themelis:Rate Phenomena in Process Met- allurgy. Wiley-Interscience, New York. NY. 1971.

    Google Scholar 

  29. Y. Sahai and' R. I. L. Guthrie:Metall. Trans. B, 1982, vol. 13B, pp. 193–202.

    Google Scholar 

  30. G. W. Toop: Cominco Ltd., Trail, BC, Canada, private commu- nication, 1980.

  31. J. M. Floyd and P. J. Mackey: inExtraction Metallurgy '81, IMM, London, 1981, pp. 345–71.

    Google Scholar 

  32. A. V. Tonkonogi, B. P. Ustimenko, V. N. Zmeikov, B. N. Gutsalyuk, R.A. Zhurgembaev, and V. N. Glushko:Soviet J. Non-Ferrous Metallurgy, 1968, vol. 9(11), pp. 37–41.

    Google Scholar 

  33. J.F. Elliot and J.D. Nauman: inMetal-Slag-Gas Reactions and Processes. Z.A. Foroulis and W. W. Smeltzer, eds., The Electro- chemical Soc., 1975, pp. 238–50.

  34. F. Kreith:Principles of Heat Transfer, IEP, New York. NY, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, G.G., Brimacombe, J.K. Kinetics of the zinc slag-Fuming Process: part II. mathematical model. Metall Trans B 16, 529–540 (1985). https://doi.org/10.1007/BF02654851

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654851

Keywords

Navigation