Skip to main content
Log in

Kinetics of the zinc slag-Fuming process: Part i. industrial measurements

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A study involving industrial measurements and mathematical modeling has been conducted to eluci-date kinetic phenomena in the zinc slag fuming process. In the first part of this three-part paper, the results of industrial measurements and observations are presented. In Part II a mathematical model of the process is developed, and finally in Part III the implications of a kinetic conception of the process for process improvement are explored. The industrial work consisted primarily of slag sampling through the fuming cycles of five different fuming operations. In addition, tuyere back-pressure mea-surements, tuyere photography using a tuyerescope, and sampling of the fume product were under-taken at one operation. Analysis of the slag samples has shown that, in general, the zinc elimination curve is linear with time and that a portion of the injected coal entrains in the slag. Analysis of tuyere back-pressure fluctuations and movie photographs of the tuyere tip indicate that the coal-air mixture enters the slag in the form of discrete bubbles. From these results it can be deduced that the fuming furnace consists of two reaction zones which are created by the division of coal between the slag and the tuyere gas stream. The coal entrained in the slag reduces ZnO and Fe3O4 in a “reduction zone” which is responsible for fuming. The coal remaining in the tuyere gas stream combusts in an “oxidation zone” although a fraction passes through the bath unconsumed and reports to the solid products. The oxidation zone supplies heat to the endothermic reduction reactions and heat losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Courtney:Proc. Australas., I.M.M., N.S., 1920, no. 38, pp. 75–84.

  2. R.B. Caples:J. Amer. Zinc lnst., 1931, vol. 14, pp. 81–85.

    CAS  Google Scholar 

  3. G.E. Murray:Trans. Canadian I.M.M., 1933, vol. 36, pp. 75–103.

    Google Scholar 

  4. H. H. Kellogg:Eng. Mining J., 1957, vol. 158 (3), pp. 90–92.

    Google Scholar 

  5. R. C. Bell, G. H. Turner, and E. Peters:TMS-AIME, 1955, vol. 203, pp. 472–77.

    Google Scholar 

  6. H.H. Kellogg:TMS-AIME, 1967. vol. 239, pp. 1439–49.

    CAS  Google Scholar 

  7. R.J. Grant and L.J. Barnett: inSouth Australia Conference 1975, Australas. I.M.M., Melbourne, 1975, pp. 247–65.

    Google Scholar 

  8. A.I. Evdokimenko, R.Zh. Khobdabergenov, A. P. Sosnin, S.P. Golger. and N. A. Kolesnikov:Soviet J. Non-Ferrous Metals, 1977, vol. 18 (11), pp. 62–65.

    Google Scholar 

  9. V. A. Ivanov, A.M. Intykbaev, V. S. Rorbator, and L.I. Varnakov:Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metal., 1977, pp. 154–56.

  10. M.A. Glinkov, A. V. Grechko, J. N. Nevedomskaya, V. V. Kobakhidze, and V. P. Bystrov:Soviet J. Non-Ferrous Metals, 1971, vol. 12 (7). pp. 16–19.

    Google Scholar 

  11. E. S. Gnatovskii, A.I. Evdokimenko, V. V. Kotlyarenko, and I.V. Savin:Soviet J. Non-Ferrous Metals, 1970, vol. 11 (5), pp. 27–30.

    Google Scholar 

  12. E. N. Mazurchuk, L. G. Lavrov, A. V. Vanyukov, V. Ya. Zaitsev, and O.B. Bystrova:Soviet J. Non-Ferrous Metals, 1970, vol. 11 (4) pp. 28–31.

    Google Scholar 

  13. G. Abrashev: inAdvances in Extractive Metallurgy and Refining, M.J. Jones, ed., I.M.M., London, 1972, pp. 317–26.

    Google Scholar 

  14. O.A. Sundström:J. Metals, 1969, vol. 21 (6), pp. 15–21.

    Google Scholar 

  15. G.G. Richards: Ph.D. Thesis, University of British Columbia, 1983.

  16. E.O. Hoefele and J. K. Brimacombe:Metall. Trans. B, 1979, vol. 10B, pp. 631–48.

    Article  CAS  Google Scholar 

  17. A.A. Bustos, G.G. Richards, N.B. Gray, and J.K. Brimacombe:Metall. Trans. B, 1984, vol. 15B, pp. 77–89.

    Article  CAS  Google Scholar 

  18. R. M. Grant: inAustralia Japan Extractive Metallurgy Symposium, Sydney, Australia, 1980, Australas. I.M.M., 1980.

    Google Scholar 

  19. T. A.A. Quarm:Mining Magazine, 1965, vol. 113 (2), pp. 114–23.

    CAS  Google Scholar 

  20. T. A. A. Quarm:Eng. Mining J., 1968, vol. 169 (1), pp. 92–93.

    Google Scholar 

  21. J.H. Swisher:Trans. Met. Soc. AIME, 1968, vol. 242, pp. 2033–37.

    CAS  Google Scholar 

  22. A. G. Ponomarenko and Yu. E. Kozlov:Russian Metallurgy, 1974, no. 5, pp. 61–66.

  23. M.L. Pearse:J. Am. Ceram. Soc., 1964, vol. 47 (7), pp. 342–47.

    Article  Google Scholar 

  24. B. Ohman and T. Lehner:Scaninject I, Proc. of 1st Int. Conf. on Injection Metallurgy, Mefos/Jerkontoret, Luleå, Sweden, 1977, pp. 2:1–2:30.

  25. O. Haida, T. Emi, S. Yamada, and F. Sudo:Scaninject II, Proc. of 2nd Int. Conf. on Injection Metallurgy, Mefos/Jerkontoret. Luleå, Sweden, 1980, pp. 20:1–20:20.

  26. H. P. Haastert, H. Maas, and H. Richter:Scaninject II, Proc. of 2nd Int. Conf. on Injection Metallurgy, Mefos/Jerkontoret. Luleå, Sweden, 1980, pp. 26:1–26:13.

  27. O. Wijk and P. Mellberg: inJapan-Sweden Joint Symposium on Fer- rous Metallurgy, Tokyo, Japan, December 1978, ISIJ, Tokyo, 1978, pp. 121–32.

    Google Scholar 

  28. R. Rummel:Gas and Coke, 1959, vol. 21 (247), pp. 493–501, 520.

    CAS  Google Scholar 

  29. D.G.C. Robertson, D.S. Conochie, and A.H. Castillejos: inScaninject II, Luleå, Sweden, June 1980, pp. 4:1–4:36.

  30. D. N. Ghosh and K. W. Lange:Ironmaking Steelmaking, 1982, vol. 9, pp. 136–41.

    Google Scholar 

  31. L. Farias and D.G.C. Robertson: inApplication of Mathematical and Physical Models in the Iron and Steel Industry, 3rd Process Technology Conference, Pittsburgh, PA, 1982, ISS-AIME, 1982, pp. 206–20.

    Google Scholar 

  32. T. A. Engh. K. Larsen, and K. Venas:Ironmaking Steelmaking, 1979, vol. 6, pp. 268–73.

    CAS  Google Scholar 

  33. C.Y. Wen: inBulk Materials Handling, M.C. Hawk, ed., Univ. Pittsburgh. Pittsburgh. PA. 1971, vol. 1, pp. 158–95.

    Google Scholar 

  34. J. F. Richardson and M. McLeman:Trans. Instn. Chem. Engrs., 1960, vol. 38, pp. 257–66.

    CAS  Google Scholar 

  35. B. Ghosh and A. Orning:Industr. Engng. Chem., 1955, vol. 47 (1). pp. 117–21.

    Article  CAS  Google Scholar 

  36. R.J. O'Malley. C. E. Dremann, and D. Apelian:J. Metals, 1979, vol. 13, pp. 14–19.

    Google Scholar 

  37. R. Suzuki, S. Goto, and K. Azuma:J. Faculty of Engng., Univ. of Tokyo, (B), 1970, vol. 30 (3), pp. 247–88.

    CAS  Google Scholar 

  38. F. Brenthel and R. Fichte:Metal und En, 1943, vol. 40, pp. 81–109.

    CAS  Google Scholar 

  39. H. Towers:Trans. Brit. Ceram. Soc., 1954. vol. 53, pp. 180–96.

    CAS  Google Scholar 

  40. R.H. Essenhigh: inSixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1977, pp. 353–74.

    Google Scholar 

  41. H.C. Hotteland I. M.Stewart:Industr. Engng. Chem., 1940, vol. 32, pp. 719–30.

    Article  Google Scholar 

  42. R.H. Essenhigh: inChemistry of Coal Utilization. 2nd Supp. Vol., M.A. Elliott, ed.. Wiley-Interscience, New York, NY, 1981, pp. 1153–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, G.G., Brimacombe, J.K. & Toop, G.W. Kinetics of the zinc slag-Fuming process: Part i. industrial measurements. Metall Trans B 16, 513–527 (1985). https://doi.org/10.1007/BF02654850

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654850

Keywords

Navigation