Skip to main content
Log in

Production of Al-Zr Master Alloy by Electrolysis of the KF-NaF-AlF3-ZrO2 Melt: Modifying Ability of the Master Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In prior works, a novel method for continuously obtaining Al-Zr master alloys from oxide raw materials by electrolysis of a low-melting electrolyte based on the KF-NaF-AlF3-ZrO2 system at 800 °C to 820 °C was proposed. In the present work, the method for preparing the Al-Zr master alloy proceeded in an enlarged 100 A electrolyzer and the obtained master alloy was applied for grain refinement and improvement of its aluminum alloy properties. The modifying ability of the master alloy was studied, drawing on the example of the Al-Si-Fe alloy. Different amounts of the Al-Zr master alloy with a content of 10 wt pct zirconium were added to the Al-Si-Fe alloy at 900 °C. The effect of the zirconium content in the aluminum alloy and its cooling rate on its structure and properties was revealed. It was found that the addition of zirconium to the alloy refined the grain by 4 to 5 times without changing its shape or structure. A study of the joint effect of alloying and rate cooling indicated that a grain size reduction of up to 5 mkm can be achieved by these procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Liu, Zh. Guo, J. Xue, Ch. Zhu, P. Zhang, and X. Li: J. Alloys Compd., 2020, vol. 818, p. 152870.

    Article  CAS  Google Scholar 

  2. T. Tsuda, C.L. Hussey, G.R. Stafford, and O. Kongstein: J. Electrochem. Soc., 2004, vol. 151(7), pp. C447–54.

    Article  CAS  Google Scholar 

  3. P. Pershin, A. Suzdaltsev, and Yu. Zaikov: J. Electrochem. Soc., 2016, vol. 163(5), pp. D167–71.

    Article  CAS  Google Scholar 

  4. S.K. Padamata, A.S. Yasinskiy, and P.V. Polyakov: J. Electrochem. Soc., 2021, vol. 168, p. 13505.

    Article  CAS  Google Scholar 

  5. P.K. Rajagopalan, I.G. Sharma, and T.S. Krishnan: J. Alloys Compd., 1999, vol. 285, p. 212.

    Article  CAS  Google Scholar 

  6. E. Kubinakova, V. Danielik, and J. Hives: J. Alloys Compd., 2018, vol. 738, pp. 151–7.

    Article  CAS  Google Scholar 

  7. S. Shiomi, M. Miyake, and T. Hirato: J. Electrochem. Soc., 2012, vol. 159, pp. D225–9.

    Article  CAS  Google Scholar 

  8. A.V. Suzdaltsev, P.S. Pershin, A.A. Filatov, AYu. Nikolaev, and Yu.P. Zaikov: J. Electrochem. Soc., 2020, vol. 167, p. 102503.

    Article  CAS  Google Scholar 

  9. I.G. Brodova, V.V. Stolyarov, A.B. Manukhin, T.I. Yablonskikh, D.V. Bashlykov, E.P. Soshnikova, and N.A. Zolotova: Phys. Met. Metallogr., 2001, vol. 91, pp. 494–9.

    Google Scholar 

  10. L.I. Kaigorodova, I.G. Brodova, E.I. Sel’nikhina, and O.R. Shamsheeva: Phys. Met. Metallogr., 2000, vol. 90, pp. 281–7.

    Google Scholar 

  11. E.A. Kozlov, I.G. Brodova, D.V. Bashlykov, T.I. Yablonskikh, and E.V. Abakshin: Phys. Met. Metallogr., 1999, vol. 87, pp. 204–14.

    Google Scholar 

  12. X. Su, X. Shang, Yu. Che, Sh. Li, J. Song, and J. He: Ceram. Int., 2021, vol. 47(15), pp. 21459–65.

    Article  CAS  Google Scholar 

  13. X. Shang, Sh. Li, Yu. Che, Y. Shu, J. He, and J. Song: Sep. Purif. Tech., 2021, vol. 275, p. 118096.

    Article  CAS  Google Scholar 

  14. S. Li, Y. Che, J. Song, Y. Shu, J. He, B. Xu, and B. Yang: Sep. Purif. Tech., 2021, vol. 274, p. 118803.

    Article  CAS  Google Scholar 

  15. A.A. Filatov, P.S. Pershin, A.V. Suzdaltsev, AYu. Nikolaev, and Yu.P. Zaikov: J. Electrochem. Soc., 2018, vol. 165, pp. E28–34.

    Article  CAS  Google Scholar 

  16. A.V. Suzdaltsev, A.A. Filatov, AYu. Nikolaev, A.A. Pankratov, N.G. Molchanova, and Yu.P. Zaikov: Rus. Met. (Metally)., 2018, vol. 2018, pp. 133–8.

    Article  Google Scholar 

  17. A.A. Filatov, P.S. Pershin, AYu. Nikolaev, and A.V. Suzdaltsev: Tsvet Metally., 2017, vol. 2017(11), pp. 27–31.

    Article  Google Scholar 

  18. A.S. Vorobev, A.V. Suzdaltsev, and A.E. Galashev: Rus. Met. (Metally)., 2019, vol. 2019, pp. 781–8.

    Article  Google Scholar 

  19. P.S. Pershin, A.A. Kataev, A.A. Filatov, A.V. Suzdaltsev, and Yu.P. Zaikov: Met. Mater. Trans. B., 2017, vol. 48, pp. 1962–9.

    Article  Google Scholar 

  20. M.G. Bao, Z.W. Wang, B.L. Gao, Z.N. Shi, X.W. Hu, and J.Y. Yu: Adv. Mater. Res., 2014, vol. 67, pp. 67–71.

    Article  Google Scholar 

  21. M. Li, Y. Li, and Z. Wang: J. Electrochem. Soc., 2019, vol. 166, pp. D65–8.

    Article  CAS  Google Scholar 

  22. F. Liu, C. Ding, W. Tao, X. Hu, B. Ga, Z. Shi, and Z. Wang: JOM., 2017, vol. 69(12), pp. 2644–7.

    Article  CAS  Google Scholar 

  23. I.G. Brodova, D.V. Bashlykov, A.B. Manukhin, V.V. Stolyarov, and E.P. Soshnikova: Scripta Mater., 2001, vol. 44, pp. 1761–4.

    Article  CAS  Google Scholar 

  24. OYu. Tkacheva, I.G. Brodova, P.A. Arkhipov, and Yu.P. Zaikov: Rus. J. Non-Ferrous Met., 2017, vol. 58, pp. 67–74.

    Article  Google Scholar 

  25. J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, and A. Sterten, Aluminium Electrolysis. Fundamentals of the Hall–Heroult Process, 3rd ed., Aluminium-Verlag Marketing & Kommunikation GmbH, Dusseldorf, 2001.

  26. L. Dion, L.I. Kiss, S. Poncsák, and C.-L. Lagacé: Met. Mat. Trans. B., 2018, vol. 49, pp. 737–55.

    Article  CAS  Google Scholar 

  27. V.N. Nekrasov, A.V. Suzdaltsev, O.V. Limanovskaya, A.P. Khramov, and Yu.P. Zaikov: Electrochim. Acta., 2012, vol. 75, pp. 296–304.

    Article  CAS  Google Scholar 

  28. T. Brandvik, H. Gaertner, A.P. Ratvik, T. Grande, and Th.A. Aarhaug: Met. Mater. Trans. B., 2019, vol. 50B, pp. 950–7.

    Article  Google Scholar 

  29. S. Jucken, B. Tougas, B. Davis, D. Guay, and L. Roué: Met. Mater. Trans. B., 2019, vol. 50B, pp. 3103–11.

    Article  Google Scholar 

  30. A.V. Suzdaltsev, AYu. Nikolaev, and Yu.P. Zaikov: J. Electrochem. Soc., 2021, vol. 168(4), p. 046521.

    Article  CAS  Google Scholar 

  31. A. Apisarov, J. Barreiro, A. Dedyukhin, L. Galan, A. Redkin, O. Tkacheva, and Y. Zaikov: TMS Light Met., 2012, vol. 3, pp. 783–6.

    Google Scholar 

  32. AYu. Nikolaev, A.V. Suzdaltsev, and Yu.P. Zaikov: J. Electrochem. Soc., 2019, vol. 166(15), pp. D784–91.

    Article  CAS  Google Scholar 

  33. D. Mikhaylov, M. Khatsayuk, and K. Mikhaylov: App. Mech. Mater., 2015, vol. 698, pp. 95–100.

    Article  Google Scholar 

  34. D. Obiso, M. Reuter, and A. Richter: Metall. Mater. Trans. B, 2021, vol. 52, pp. 3064–77. https://doi.org/10.1007/s11663-021-02233-3.

    Article  CAS  Google Scholar 

  35. BS EN 575: 1996, Aluminium and aluminium alloys. Master alloys produced by melting. Specifications, 1996.

  36. X. Xu, X. Jin, Z. Liu, B. Zhang, R. Zhang, Y. Zhuang, P. Zhang, and H. Wei: Appl. Phys. A., 2020, vol. 126, p. 713.

    Article  CAS  Google Scholar 

  37. F. Wang, D.G. Eskin, A.V. Khvan, K.F. Starodub, J.J.H. Lim, M.G. Burke, T. Connolley, and J. Mi: Scripta Mater., 2017, vol. 133, pp. 75–8.

    Article  CAS  Google Scholar 

  38. N.P. Lyakishev: Phase diagrams of double metallic system: handbook, Mechanical Engineering, Moscow, 1996.

    Google Scholar 

  39. E.A. Kozlov, D.V. Bashlykov, I.G. Brodova, and T.I. Yablonskikh: Phys. Met. Metallogr., 2005, vol. 100, pp. 586–90.

    Google Scholar 

  40. O.A. Chikova, B.V. Ovsyannikov, and P.L. Reznik: Mater. Sci. Forum., 2016, vol. 870, pp. 243–7.

    Article  Google Scholar 

  41. A.Y. Krokhin, V.K. Mann, D.K. Ryabov, and N.A. Babitskiy: Min. Met. Mater. Series., 2018, vol. 2018, pp. 1573–80.

    Google Scholar 

  42. W. Kang, H.Y. Li, S.X. Zhao, Y. Han, C.L. Yang, and G. Ma: J. Alloys Compd., 2017, vol. 704, pp. 683–92.

    Article  CAS  Google Scholar 

  43. V.I. Elagin, M.V. Samarina, and V.V. Zakharov: Met. Sci. Heat Treatm., 2009, vol. 51, p. 515.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to V.V. Astafyev (the leading engineer of the Institute of Metal Physics UB RAS) for the obtaining the AK6 ingots modified with Al-Zr master alloy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Suzdaltsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 7 June 2021; accepted 25 September 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, A., Suzdaltsev, A. & Zaikov, Y. Production of Al-Zr Master Alloy by Electrolysis of the KF-NaF-AlF3-ZrO2 Melt: Modifying Ability of the Master Alloy. Metall Mater Trans B 52, 4206–4214 (2021). https://doi.org/10.1007/s11663-021-02340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02340-1

Navigation