Skip to main content
Log in

Study of Morphology and Magnesium Purity, Formed by Vapor Phase Through Silicothermic Reduction

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article describes the influence of temperature profile on the morphology and impurity distributions of magnesium vapor condensation during silicothermic reduction of calcined dolomite. The formation of magnesium crystals was comprehensively analyzed by optical microscopy, scanning electron microscopy (SEM), and inductively coupled plasma (ICP). The results showed that the temperature changed the morphology and purity of condensation products in the condenser. When the temperature of the condenser zone was lower than 250 °C, the magnesium vapor condensation was fine and noncompacted. The crystal growth of magnesium occurred in the range of 250 °C and 380 °C. It was found that crystal magnesium became coarser and denser at higher temperatures. Based on the analysis of crystallized magnesium, the impurity distributions decreased at temperatures higher than those of the condenser. Furthermore, this indicates that the impurity contents with less than 0.04 pct were distributed randomly through the condenser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Tian, T. Qu, B. Yang, Y.N. Dai, B.Q. Xu, and S. Geng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 657–61.

    Article  Google Scholar 

  2. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang: J. Mater. Sci. Technol., 2017, in press.

  3. F. Habashi: Handbook of Extractive Metallurgy, Wiley, New York, NY, 1997, pp. 1160–62.

    Google Scholar 

  4. L. Rongti, P. Wei, and M. Sano: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 433–37.

    Article  CAS  Google Scholar 

  5. Y. Tian, B.Q. Xu, C.B. Yang, B. Yang, T. Qu, H.X. Liu, Y.N. Dai, and D.C. Liu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1936–41.

    Article  Google Scholar 

  6. A. Krishnan, X.G. Lu, and U.B. Pal: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 463–73.

    Article  CAS  Google Scholar 

  7. K.N. Solanki, D. Orlov, A. Singh, and N.R. Neelameggham: Magnesium Technology 2017, Springer, Switzerland, 2017, pp. 107–11, 199–202, and 107–11.

  8. R.B. Li, S.J. Zhang, L.J. Guo, and J.J. Wei: Int. J. Heat Mass Transfer, 2013, vol. 59, pp. 328–37.

    Article  CAS  Google Scholar 

  9. D. Fu, Y. Wang, J. Peng, Y. Di, S. Tao, and N. Feng: Adv. Chem. Eng. II, 2012, vol. 550–553, pp. 1779–83.

    Google Scholar 

  10. W. Wulandari, A. Rhamdhani, G. Brooks, and B.J. Monaghan: Eur. Metall. Conf. on GDMB Society for Mining, EMC, Austria, 2009, pp. 1401–15.

  11. I.M. Morsi and H.H. Ali: Int. J. Miner. Process., 2014, vol. 127, pp. 37–43.

    Article  CAS  Google Scholar 

  12. D.X. Fu, T.A. Zhang, L.K. Guan, Z.H. Dou, and M. Wen: JOM, 2016, vol. 68, pp. 3208–13.

    Article  CAS  Google Scholar 

  13. B. Mehrabi, M. Abdellatif, and F. Masoudi: Int. J. Mater. Sci. Eng., 2011, vol. 8, pp. 18–24.

    CAS  Google Scholar 

  14. C. Wang, C. Zhang, S.J. Zhang, and L.J. Guo: Int. J. Miner. Process., 2015, vol. 142, pp. 147–53.

    Article  CAS  Google Scholar 

  15. Y. Aviezer, L. Birnhack, A. Leon, E. Aghion, and O. Lahav: Hydrometallurgy, 2017, vol. 169, pp. 520–33.

    Article  CAS  Google Scholar 

  16. M. Bugdayci, A. Turan, M. Alkan, and O. Yucel: High Temp. Mater. Proc., 2018, vol. 37, pp. 1–8.

    Article  CAS  Google Scholar 

  17. H. Halmann, A. Frei, and A. Steinfeld: Ind. Eng. Chem. Res., 2008, vol. 47, pp. 2146–54.

    Article  CAS  Google Scholar 

  18. C.B. Yang, Y. Tian, T. Qu, B. Yang, B.Q. Xu, and Y.N. Dai: J. Magn. Alloys, 2014, vol. 2, pp. 50–58.

    Article  CAS  Google Scholar 

  19. C.B. Yang, Y. Tian, T. Qu, B. Yang, B.Q. Xu, and Y.N. Dai: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 561–69.

    Article  CAS  Google Scholar 

  20. C.B. Yang, Y. Tian, T. Qu, B. Yang, B.Q. Xu, and Y.N. Dai: J. Magn. Alloys, 2013, vol. 1, pp. 323–29.

    Article  CAS  Google Scholar 

  21. A.K. Mahapatra, J. Wang, H. Zhang, and M. Han: Lett. J. Explor. Front. Phys., 2016, vol. 115, pp. 1–6.

    Google Scholar 

  22. M. Cho and J.J. Fawcett: Am. Mineral., 1986, vol. 71, pp. 78–84.

    CAS  Google Scholar 

  23. I. Sunagawa: Crystals Growth, Morphology and Perfection, 1st ed., Cambridge University Press, New York, NY, 2005, pp. 45–47.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Gorji.

Additional information

Manuscript submitted August 25, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorji, A., Panjepour, M. & Ahmadian, M. Study of Morphology and Magnesium Purity, Formed by Vapor Phase Through Silicothermic Reduction. Metall Mater Trans B 49, 2435–2443 (2018). https://doi.org/10.1007/s11663-018-1357-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1357-x

Keywords

Navigation