Skip to main content
Log in

Experimental investigation on the concentration and voltage effects on the characteristics of deposited magnesium–lanthanum powder

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, magnesium–lanthanum powders were synthesized by an electrodeposition technique using an aqueous solution, based on magnesium chloride hexahydrate and lanthanum nitrate for different values of voltage and La weight percentage. A copper cathode plate and a tungsten thread anode were used for the preparation of the Mg–La layers. The as-deposited powders were characterized by energy dispersive spectroscopy (EDS) to determine the chemical composition, scanning electron microscope to describe the morphology, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra in order to define the chemical structure. EDS analyses indicate the presence of three elements (Mg, La and O) in the different deposited layers, and the major one is O (51–74.2 at.%). The two other elements, Mg and La, are, respectively, ranked 2 and 3 in the different powders. Morphological description reveals the formation of heterogeneous chemical structures on the surfaces of specimens. They are characterized by aggregates with different sizes. The dark aggregates are associated with magnesium, and the bright ones are attributed to lanthanum. X-ray results showed the existence of two distinct phases in the obtained deposits which are magnesium hydroxide (Mg(OH)2) and lanthanum hydroxide (La(OH)3). FTIR analyses confirm the presence of the two phases identified in XRD diffractograms, and they can be exhibited by clear peaks. In the studied ranges of voltage and La weight percentage, their peak transmittances have non-monotonic behaviors. A design of experiments was used to determine the influence of these two processing parameters and their interaction on the products formation. The parameter effects were ranked as follow: The first was the voltage then the interaction between the two parameters and finally the La content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.A. Zaldívar-Cadena, I. Díaz-Peña, J.G. Cabañas-Moreno, Dispersion of niquel on the microstructure in magnesium based alloys for hydrogen storage. J. Magnes. Alloys 1, 292–296 (2013)

    Article  Google Scholar 

  2. V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing. Int. J. Hydrogen Energy 34, 6320–6324 (2009)

    Article  Google Scholar 

  3. N. Cui, P. He, J.L. Luo, Synthesis and characterization of nanocrystalline magnesium-based hydrogen storage alloy electrode materials. Electrochim. Acta 44, 3549–3558 (1999)

    Article  Google Scholar 

  4. S.S. Makridis, E.I. Gkanas, G. Panagakos, E.S. Kikkinides, A.K. Stubos, P. Wagener, S. Barcikowski, Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage. Int. J. Hydrogen Energy 38, 11530–11535 (2013)

    Article  Google Scholar 

  5. J.C. Crivello, T. Nobuki, T. Kuji, Improvement of Mg–Al alloys for hydrogen storage applications. Int. J. Hydrogen Energy 34, 1937–1943 (2009)

    Article  Google Scholar 

  6. C. Pohlmann, L. Röntzsch, S. Kalinichenka, T. Hutsch, B. Kieback, Magnesium alloy-graphite composites with tailored heat conduction properties for hydrogen storage applications. Int. J. Hydrogen Energy 35, 12829–12836 (2010)

    Article  Google Scholar 

  7. Q.S. Zhao, Y.N. NuLi, Y.S. Guo, J. Yang, J.L. Wang, Reversibility of electrochemical magnesium deposition from tetrahydrofuran solutions containing pyrrolidinyl magnesium halide. Electrochim. Acta 56, 6530–6535 (2011)

    Article  Google Scholar 

  8. B.L. Mordike, T. Ebert, Magnesium: properties—applications—potential. Mater. Sci. Eng. A 302, 37–45 (2001)

    Article  Google Scholar 

  9. F. Rosalbino, E. Angelini, S. De Negri, A. Saccone, S. Delfino, Electrochemical behaviour assessment of novel Mg-rich Mg–Al–RE alloys (RE = Ce, Er). Intermetallics 14, 1487–1492 (2006)

    Article  Google Scholar 

  10. M. Bornapour, M. Celikin, M. Cerruti, M. Pekguleryuz, Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater. Sci. Eng. C 35, 267–282 (2014)

    Article  Google Scholar 

  11. C.A. Grillo, F. Alvarez, M.A.F.L. de Mele, Cellular response to rare earth mixtures (La and Gd) as components of degradable Mg alloys for medical applications. Colloids Surf. B 117, 312–321 (2014)

    Article  Google Scholar 

  12. W. Liu, F. Cao, L. Chang, Z. Zhang, J. Zhang, Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy. Corros. Sci. 51, 1334–1343 (2009)

    Article  Google Scholar 

  13. H. Chu, Y. Zhang, L. Sun, S. Qiu, F. Xu, H. Yuan, Q. Wang, C. Dong, Structure, morphology and hydrogen storage properties of composites prepared by ball milling Ti0.9Zr0.2Mn1.5Cr0.3V0.3 with La–Mg-based alloy. Int. J. Hydrogen Energy 32, 3363–3369 (2007)

    Article  Google Scholar 

  14. S. Yang, F. Yang, C. Liao, M. Li, X. Wang, Electrodeposition of magnesium–yttrium alloys by molten salt electrolysis. J. Rare Earths 28, 385–388 (2010)

    Article  Google Scholar 

  15. Z. Abdel Hamid, M.T. Abou El-khair, H.B. Hassan, Synthesis and protection of AM50 magnesium alloy and its composites using environmentally pretreatment electrolyte. Surf. Coat. Technol. 206, 1041–1050 (2011)

    Article  Google Scholar 

  16. M. Parco, L. Zhao, J. Zwick, K. Bobzin, E. Lugscheider, Investigation of HVOF spraying on magnesium alloys. Surf. Coat. Technol. 201, 3269–3274 (2006)

    Article  Google Scholar 

  17. F. Liu, W. Liang, X. Li, X. Zhao, Y. Zhang, H. Wang, Improvement of corrosion resistance of pure magnesium via vacuum pack treatment. J. Alloys Compd. 461, 399–403 (2008)

    Article  Google Scholar 

  18. S. Ignat, P. Sallamand, D. Grevey, M. Lambertin, Magnesium alloys laser (Nd:YAG) cladding and alloying with side injection of aluminium powder. Appl. Surf. Sci. 225, 124–134 (2004)

    Article  ADS  Google Scholar 

  19. Ch. Christoglou, N. Voudouris, G.N. Angelopoulos, M. Pant, W. Dahl, Deposition of aluminium on magnesium by a CVD process. Surf. Coat. Technol. 184, 149–155 (2004)

    Article  Google Scholar 

  20. Y. NuLi, J. Yang, P. Wang, Electrodeposition of magnesium film from BMIMBF4 ionic liquid. Appl. Surf. Sci. 252, 8086–8090 (2006)

    Article  ADS  Google Scholar 

  21. K.R. Liu, Q. Liu, Q. Han, G.F. Tu, Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-AlCl3 ionic liquids. Trans. Nonferrous Met. Soc China 21, 2104–2110 (2011)

    Article  Google Scholar 

  22. S. Wang, X. Guo, H. Yang, J. Dai, R. Zhu, J. Gong, L. Peng, W. Ding et al., Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid. Appl. Surf. Sci. 288, 530–536 (2014)

    Article  ADS  Google Scholar 

  23. A. Bakkar, V. Neubert, Electrodeposition onto magnesium in air and water stable ionic liquids: from corrosion to successful plating. Electrochem. Commun. 9, 2428–2435 (2007)

    Article  Google Scholar 

  24. N. Gascoin, P. Gillard, G. Baudry, Characterisation of oxidised aluminium powder: validation of a new anodic oxidation bench. J. Hazard. Mater. 171, 348–357 (2009)

    Article  Google Scholar 

  25. A.H. Khan, J.Q. Shang, R. Alam, Ultrasound-assisted extraction for total sulphur measurement in mine tailings. J. Hazard. Mater. 235–236, 376–383 (2012)

    Article  Google Scholar 

  26. J. Beltrán-Heredia, J. Sánchez-Martín, M.A. Dávila-Acedo, Optimization of the synthesis of a new coagulant from a tannin extract. J. Hazard. Mater. 186, 1704–1712 (2011)

    Article  Google Scholar 

  27. H. Tang, Y.D. Yan, M.L. Zhang, X. Li, W. Han, Y. Xue, Z.J. Zhang, H. He, Fabrication of Mg–Pr and Mg–Li–Pr alloys by electrochemical co-reduction from their molten chlorides. Electrochim. Acta 107, 209–215 (2013)

    Article  Google Scholar 

  28. S.Q. Wei, M.L. Zhang, W. Han, Y.D. Yan, M. Zhang, B. Zhang, Electrochemical codeposition of Mg–Li–Gd alloys from LiCl–KCl–MgCl2–Gd2O3 melts. Trans. Nonferrous Met. Soc. China 21, 825–829 (2011)

    Article  Google Scholar 

  29. J. Gröbner, M. Hampl, R. Schmid-Fetzer, M.A. Easton, S. Zhu, M.A. Gibson, J.F. Nie, Phase analysis of Mg–La–Nd and Mg–La–Ce alloys. Intermetallics 28, 92–101 (2012)

    Article  Google Scholar 

  30. L. Jianjun, Y. Xiaoyan, C. Jia, L. Xiaowei, F. Chengxing, C. Youfa, The gemmological properties and infrared spectra of brucite, an imitation of nephrite and Shoushan stone. J. Gemmol. 32, 67–73 (2010)

    Google Scholar 

  31. J.E. Gray-Munro, M. Strong, A study on the interfacial chemistry of magnesium hydroxide surfaces in aqueous phosphate solutions: influence of Ca2+, Cl and protein. J. Colloid Interface Sci. 393, 421–428 (2013)

    Article  Google Scholar 

  32. M. Aghazadeh, A.N. Golikand, M. Ghaemi, T. Yousefi, A novel lanthanum hydroxide nanostructure prepared by cathodic electrodeposition. Mater. Lett. 65, 1466–1468 (2011)

    Article  Google Scholar 

  33. M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 509, 4098–4103 (2011)

    Article  Google Scholar 

  34. F. Khosrow-pour, M. Aghazadeh, S. Dalvand, B. Sabour, Large scale and uniform La(OH)3 nanorods prepared by template-free pulsed electrodeposition method. Mater. Lett. 104, 61–63 (2013)

    Article  Google Scholar 

  35. J.M. Trindade, L.C. Martiniano, V.R.A. Gonçalves, A.G. Souza, A.L.B. Marques, G.L. Baugis, T.C.O. Fonseca, C. Song, J. Zhang, E.P. Marques, Anodic stripping voltammetry coupled with design of experiments for simultaneous determination of Zn+2, Cu+2, Pb+2, and Cd+2 in gasoline. Fuel 91, 26–32 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chetehouna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahli, M., Chetehouna, K., Faubert, F. et al. Experimental investigation on the concentration and voltage effects on the characteristics of deposited magnesium–lanthanum powder. Appl. Phys. A 119, 1327–1333 (2015). https://doi.org/10.1007/s00339-015-9099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9099-y

Keywords

Navigation