Skip to main content
Log in

Solid oxide membrane process for magnesium production directly from magnesium oxide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solid oxide membrane (SOM) process is an emerging technology for the environmentally friendly extraction of high-energy-content metals such as magnesium, tantalum, and titanium directly from their respective oxides. This paper reports on the recent success of the SOM process for magnesium production from magnesium oxide dissolved in fluoride-based fluxes in the temperature range 1150 °C to 1300 °C. This process employs an inert oxygen-ion-conducting stabilized zirconia membrane to separate the inert cathode in the flux from the anode. When the applied electrical potential between the electrodes exceeds the dissociation potential of magnesium oxide, oxygen ions are pumped out of the melt and through the zirconia membrane to the anode where they are oxidized. Reduced magnesium evolves at the cathode as a vapor and is condensed in a separate chamber yielding a high-purity product. The SOM cell has been electrochemically characterized, and key concepts related to MgO dissociation, leakage current, and mass transfer relevant to the SOM process are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kramer: U.S. Geological Survey Report No. 01-341, Reston, VA, 2001, pp. 1–30.

  2. F. Froes, D. Eliezer, and E. Aghion: J. Met., 1998, Sept., pp. 30–34.

  3. A. McClaine, K. Brown, and S. Tullmann: Fuel Cells, 2003 (2003).

  4. D. Woolley, U. Pal, and G. Kenney: J. Met., 2001, Oct., pp. 32–35.

  5. N. Kanari and I. Gaballah: Metall. Mater. Trans. B, 1999, vol. 30, pp. 383–91.

    Article  Google Scholar 

  6. T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Metall. Trans. B, 1993, vol. 24B, pp. 449–55.

    CAS  Google Scholar 

  7. T.H. Okabe, T.N. Deura, T. Oishi, K. Ono, and D. Sadoway: J. Alloys Compounds, 1996, vol. 237, pp. 150–54.

    Article  CAS  Google Scholar 

  8. G. Chen and D. Fray: J. Appl. Electrochem., 2001, vol. 31, pp. 155–64.

    Article  CAS  Google Scholar 

  9. D.J. Fray, G.J. Chen, and T. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  Google Scholar 

  10. R. Suzuki and K. Ono: Metall. Trans. B, 2003, vol. 34B, pp. 287–95.

    CAS  Google Scholar 

  11. X. Van and D. Fray: Metall. Trans. B, 2002, vol. 33B, pp. 685–93.

    Google Scholar 

  12. C. Chen, E. Gordo, and D. Fray: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 223–33.

    CAS  Google Scholar 

  13. X. Jin, P. Gao, D. Wang, X. Hu, and G. Chen: Angewandte Chemie, 2004, vol. 43, pp. 733–36.

    Article  CAS  Google Scholar 

  14. K. Kiukkola and C. Wagner: J. Electrochem. Soc., 1957, vol. 104, pp. 308–16.

    Article  CAS  Google Scholar 

  15. W. Fischer and D. Janke: Scripta Metall., 1972, vol. 6, pp. 923–28.

    Article  CAS  Google Scholar 

  16. B. Korousic and B. Marincek: Helvetica Chimica Acta, 1968, vol. 51, pp. 907–11.

    CAS  Google Scholar 

  17. K.E. Oberg, W.M. Boorstein, and R.A. Rapp: Metall. Trans., 1973, vol. 4, pp. 75–82.

    CAS  Google Scholar 

  18. M. Iwase, M. Tanida, A. McLean, and T. Mori: Metall. Trans. B, 1981, vol. 12B, pp. 517–24.

    CAS  Google Scholar 

  19. Z. Hasham, U. Pal, K.C. Chou, and W.L. Worrell: J. Electrochem. Soc., 1995, vol. 141, pp. 469–75.

    Article  Google Scholar 

  20. S. Yuan, U. Pal, and K. Chou: J. Am. Ceram. Soc., 1996, vol. 79, pp. 641–50.

    CAS  Google Scholar 

  21. J. Kummer: U.S. Patent No. 3,488,271, Jan. 6, 1972.

  22. R. Minck: U.S. Patent No. 4,108,743, Aug. 22, 1978.

  23. B. Marincek: U.S. Patent No. 3,692,645, Sept. 19, 1972.

  24. B. Marincek: U.S. Patent No. 3,562,135, Feb. 9, 1971.

  25. A. Sammells: U.S. Patent No. 4,804,448, Feb. 14, 1989.

  26. U. Pal and S. Britten: U.S. Patent No. 5,976,345, Nov. 2, 1999.

  27. U. Pal and S. Britten: U.S. Patent No. 6,299,742, Oct. 9, 2001.

  28. U. Pal, K. Chou, S. Yuan, and Z. Hasham: U.S. Patent No. 5,567,286, Oct. 22, 1996.

  29. R.A. Rapp: U.S. Patent No. 5,942,097, Aug. 24, 1999.

  30. R.A. Rapp: U.S. Patnet No. 6,039,862, Mar. 21, 2000.

  31. R. Rapp and Y. Zhang: Light Metals, TMS, Warrendale, PA 2002, pp. 469–74.

    Google Scholar 

  32. A. Lacamera: U.S. Patent No. 6,187,168, Feb. 13, 2001.

  33. D. Poa: U.S. Patent No. 4,995,948, Feb. 26, 1991.

  34. K.E. Oberg, W.M. Boorstein, and R.A. Rapp: Metall. Trans., 1973, vol. 4, pp. 61–67.

    CAS  Google Scholar 

  35. A. Roine: HSC Thermodynamic Software, 5th ed., Outokumpo Research Oy, Pori, Finland, 2003.

    Google Scholar 

  36. U.B. Pal, D.E. Woolley, A. Krishnan, T. Keenan, C.P. Manning, and G.B. Kenney: TMS Magn. Technol., 2002, pp. 19–24.

  37. J. Berak and I. Tomczak: Roczniki Chemii, 1965, vol. 39, pp. 519–28.

    CAS  Google Scholar 

  38. J. Macdonald: Impedance Spectroscopy: Emphasizing Solid Materials and Systems (New York: John Wiley, 1987).

    Google Scholar 

  39. E. Beck: Metallurgie, 1908, vol. 5, pp. 504–08.

    Google Scholar 

  40. S. Britten and U. Pal: Metall. Mater. Trans. B, 2000, vol. 31 B, pp. 733–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, A., Pal, U.B. & Lu, X.G. Solid oxide membrane process for magnesium production directly from magnesium oxide. Metall Mater Trans B 36, 463–473 (2005). https://doi.org/10.1007/s11663-005-0037-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0037-9

Keywords

Navigation