Skip to main content
Log in

Reduction of CaO and MgO Slag Components by Al in Liquid Fe

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuziak R., R. Kawalla, and S. Waengler: Archives of Civil and Mechanical Engineering, 2008, Vol.8, pp.103-117.

    Article  Google Scholar 

  2. Advanced high strength steel (AHSS) application guidelines, Version 5.0, May 2014, www.worldautosteel.org.

  3. Qu H., Michal G. M., & Heuer A. H.: Metall. Trans. A, 2013, Vol.44, pp.4450-53.

    Article  Google Scholar 

  4. Park J. H., Lee S. B., and Kim D. S.: Metall. Trans. B, 2005, Vol.36, pp.67-73.

    Article  Google Scholar 

  5. Itoh H., Hino M., & Ban-Ya S.: Metall Trans. B, 1997, Vol.28, pp.953-56.

    Article  Google Scholar 

  6. Park J. H., and Todoroki H.: ISIJ Int., 2010, Vol.50, pp.1333-46.

    Article  Google Scholar 

  7. YoungJo K., L. Fan, M. Kazuki, and S. Du: Steel Res. Int., 2006, Vol.77, pp.785-92.

    Article  Google Scholar 

  8. Deng Z. and M. Zhu: ISIJ Int., 2013, Vol. 53, pp. 450-58.

    Article  Google Scholar 

  9. Todoroki H. and Mizuno K.: Iron Steelmaker, 2003, Vol.30, pp.60-67.

    Google Scholar 

  10. Okuyama G., Yamaguchi K., Takeuchi S., and Sorimachi K. I.: ISIJ Int., 2000, Vol.40, pp.121-28.

    Article  Google Scholar 

  11. Harada A., Miyano G., Maruoka N., Shibata H., and Kitamura S. Y.: ISIJ Int., 2014, Vol.54, pp.2230-38.

    Article  Google Scholar 

  12. Harada A., Maruoka N., Shibata H., and Kitamura S. Y.: ISIJ Int., 2013, Vol. 53, pp.2110-17.

    Article  Google Scholar 

  13. Harada A., Maruoka N., Shibata H., and Kitamura S. Y.: ISIJ Int., 2013, Vol. 53, pp.2118-25.

    Article  Google Scholar 

  14. Yoshioka T., Nakahata K., Kawamura T., and Ohba Y. : ISIJ Int., 2016, Vol. 56, pp.1973-81.

    Article  Google Scholar 

  15. Yang W., Zhang L., and Wang X.: ISIJ Int., 2013, Vol. 53, pp.1401-10.

    Article  Google Scholar 

  16. Pretorius E. B., Oltmann H. G., and Cash T.: Iron Steel Technol., 2010, Vol. 7, pp.31-44

    Google Scholar 

  17. Verma N., Lind M., Pistorius P. C., Fruehan R. J., and Potter M.: Iron Steel Technol., 2010, Vol.7, pp.189-97.

    Google Scholar 

  18. Zhang T., Min Y., Liu C., and Jiang M.: ISIJ Int., 2015, Vol.55, pp.1541-48.

    Article  Google Scholar 

  19. Jung I. H., Decterov S. A., and Pelton A. D.: Metall. Trans. B, 2004, Vol.35, pp.493-507.

    Article  Google Scholar 

  20. E.B. Pretorius, H.G. Oltmann, and B.T. Schart: Proc. AISTech 2013 Iron Steel Technol. Conf. Expos., Pittsburgh, PA, 2013, vol. II, pp. 993–1026.

  21. S.R. Story and R.I. Asfahani: Proc. AISTech 2013 Iron Steel Technol. Conf. Expos., Pittsburgh, PA, 2013, vol. II, pp. 1201–13.

  22. Kaushik P. and H. Yin: AIST Transactions, 2012, Vol.9, pp.165-183.

    Google Scholar 

  23. Kim D. J., and Park J. H.: Metall. Trans. B, 2012, Vol.43, pp.875-86.

    Article  Google Scholar 

  24. Lewis W. K., and Whitman W. G.: Industrial and Engineering Chemistry, 1924, Vol.16, pp. 1215-20.

    Article  Google Scholar 

  25. Higbie R.: Trans. AIChE., 1935, Vol.31, pp.365-89.

    Google Scholar 

  26. Shin J.H, Chung Y, and Park J.H.: Metall. Trans. B, 2017; Vol.48, pp.46-59.

    Article  Google Scholar 

  27. S. P Piva, D. Kumar, and P.C. Pistorius: Metall. Trans. B, 2017, Vol.48, pp.37-45

    Article  Google Scholar 

  28. M Arnulf and E.F. Osborn: Phase Equilibrium among Oxides in Steelmaking. Addison Wesley Publishing Company, Reading, MA, 1965.

    Google Scholar 

  29. Ren Y., Zhang Y., and Zhang L.: Ironmaking Steelmaking, 2017, Vol.44, pp.497-504.

    Article  Google Scholar 

  30. Ohta H., and Suito H.: ISIJ Int., 1996, Vol.36, pp. 983-90.

    Article  Google Scholar 

  31. Tayeb M.A., Assis A.N., Sridhar S., Fruehan R.J.: Metall. Trans. B, 2015, Vol.46, pp.1112-14.

    Article  Google Scholar 

  32. Pistorius P.C. and N. Verma: Microsc. Microanal., 2011, Vol.17, pp.963-71.

    Article  Google Scholar 

  33. Bale C.W., Chartrand P., Degterov S.A., Eriksson G., Hack K., Mahfoud R.B., Melançon J., Pelton A.D., Petersen S.: Calphad, 2002, Vol.26, pp.189-228.

    Article  Google Scholar 

  34. Mu H., Zhang T., Yang L., Xavier. R. R, Fruehan R. J., and Webler B. A.: Metall. Trans. B, 2016, Vol.47, pp.3375-83.

    Article  Google Scholar 

  35. Fujii K., Nagasaka T., and Hino M.: ISIJ Int., 2000, Vol.40, pp.1059-66.

    Article  Google Scholar 

  36. Inoue R. and Suito H.: Metall. Trans. B, 1994, Vol.25, pp.235-44.

    Article  Google Scholar 

  37. Jiang M., Wang X., Chen B., Wang W.: ISIJ Int., 2010, Vol.50, pp.95-104.

    Article  Google Scholar 

  38. Todoroki H. and Mizuno K.: ISIJ Int., 2004, Vol.44, pp.1350-57.

    Article  Google Scholar 

  39. Wang Q., Wang L., Zhai J., Li J., Chou K.C.: Metall. Trans. B, 2017, Vol.48, pp.564-72.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the industrial members of the Center for Iron and Steelmaking Research as well as helpful discussions with Prof. Chris Pistorius. We also acknowledge the use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan A. Webler.

Additional information

Manuscript submitted September 20, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, H., Zhang, T., Fruehan, R.J. et al. Reduction of CaO and MgO Slag Components by Al in Liquid Fe. Metall Mater Trans B 49, 1665–1674 (2018). https://doi.org/10.1007/s11663-018-1294-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1294-8

Keywords

Navigation