Skip to main content
Log in

Calcium Modification of Inclusions via Slag/Metal Reactions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper examines the consistency between experiments and thermodynamic predictions of the modification of non-metallic inclusions by dissolved Ca in liquid Fe-Al alloys. Current thermodynamic predictions made with FactSage (version 7.2) were found to overestimate the amount of dissolved Ca and the Ca in non-metallic inclusions. This was demonstrated in two ways. First, Al-deoxidized Fe was held in CaO-3 pct ZrO2 crucibles for 100-136 minutes at 1873 K (1600 °C) and then reoxidized to precipitate dissolved Ca as oxide inclusions. The amount of Ca in the inclusions after reoxidation was quantified and considered equal to the dissolved Ca in the liquid Fe prior to reoxidation. Although experimental data were limited, the results suggested that the dissolved Ca was low and that the thermodynamic behavior of Ca could be best described by excluding Ca-O interaction. The assumption of no Ca-O interaction was compared with the associate solution model employed in FactSage by simulating the evolution of inclusion compositions in Fe—2, 1, 0.5, 0.1 wt pct Al alloys exposed to CaO (sat.)-MgO (sat.)-Al2O3 slags. The assumption of no Ca-O interaction led to predictions that were much closer to experimental results. More work is needed to ensure dissolved Ca behavior is accurately described and to ensure the sources for Ca modification of inclusions in industrial samples are properly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2118–25.

    CAS  Google Scholar 

  2. [2] A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2110–17.

    CAS  Google Scholar 

  3. [3] A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F.X. Huang, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2569–77.

    CAS  Google Scholar 

  4. [4] Y. Tabatabaei, K.S. Coley, G.A. Irons, and S. Sun: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2022–37.

    Google Scholar 

  5. [5] S.P.T. Piva, D. Kumar, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48, pp. 37–45.

    Google Scholar 

  6. [6] D. Kumar and P.C. Pistorius: Metall. Mater. Trans. B, 2019, vol. 50, pp. 181–91.

    Google Scholar 

  7. [7] J.H. Shin, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48, pp. 46–59.

    Google Scholar 

  8. [8] Y. Ren, Y. Zhang, and L. Zhang: Ironmak. Steelmak., 2017, vol. 44, pp. 497–504.

    CAS  Google Scholar 

  9. [9] Y. Ren, L. Zhang, H. Ling, Y. Wang, D. Pan, Q. Ren, and X. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1433–38.

    Google Scholar 

  10. [10] M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010.

    Google Scholar 

  11. [11] The Japan Institute of Metals: Physical Chemistry of Metals, Maruzen Press, Tokyo, 1996, pp. 198–208.

    Google Scholar 

  12. [12] Z. Deng, M. Zhu, and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3158–67.

    Google Scholar 

  13. [13] C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 989–98.

    Google Scholar 

  14. [14] J. Tan and B.A. Webler: AIST Trans., 2017, vol. 14, pp. 172–80.

    Google Scholar 

  15. [15] G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40, pp. 121–8.

    CAS  Google Scholar 

  16. [16] A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2230–8.

    CAS  Google Scholar 

  17. [17] N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43, pp. 830–40.

    Google Scholar 

  18. [18] J.Y. Li, G.G. Cheng, Q. Ruan, J.C. Li, J.X. Pan, and X.R. Chen: ISIJ Int., 2018, vol. 58, pp. 1042–51.

    CAS  Google Scholar 

  19. [19] Y. Ren, L.F. Zhang, and S.S. Li: ISIJ Int., 2014, vol. 54, pp. 2772–9.

    CAS  Google Scholar 

  20. [20] N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42, pp. 711–9.

    Google Scholar 

  21. [21] N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42, pp. 720–9.

    Google Scholar 

  22. [22] D. Yang, X.H. Wang, G.W. Yang, P.Y. Wei, and J.P. He: Steel Res. Int., 2014, vol. 85, pp. 1517–24.

    CAS  Google Scholar 

  23. [23] T. Zhang, C. Liu, H. Mu, Y. Li, and M. Jiang: Ironmak. Steelmak., 2018, vol. 45, pp. 447–56.

    CAS  Google Scholar 

  24. [24] E.B. Pretorius, H.G. Oltmann, and T. Cash: Iron Steel Technol., 2010, vol. 7, pp. 31–44.

    CAS  Google Scholar 

  25. [25] S.R. Story and R.I. Asfahani: Iron Steel Technol., 2013, vol. 10, pp. 86–99.

    CAS  Google Scholar 

  26. [26] Z.Y. Deng and M.Y. Zhu: ISIJ Int., 2013, vol. 53, pp. 450–8.

    CAS  Google Scholar 

  27. [27] T. Skaland, Ø. Grong, and T. Grong: Metall. Trans. A, 1993, vol. 24, pp. 2321–45.

    CAS  Google Scholar 

  28. D. Kumar, S.P.T. Piva, and P.C. Pistorius: Proceedings of the 10th International Conference and Exhibition on Clean Steel, Budapest, 18-20 September 2018, OMBKE, Budapest, 2018.

  29. [29] H. Mu, T. Zhang, R.J. Fruehan, and B.A. Webler: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1665–74.

    Google Scholar 

  30. [30] C. Liu, X. Gao, S. Ueda, and S. Kitamura: ISIJ Int., 2018, vol. 59, pp. 268–76.

    Google Scholar 

  31. [31] H. Todoroki and K. Mizuno: Iron Steelmaker, 2003, vol. 30, pp. 60–67.

    CAS  Google Scholar 

  32. G. Irons, K. Krishnapisharody, and K. Graham: Celebrating the Megascale, P.J. Mackey, E.J. Grimsey, R.T. Jones, and G.A. Brooks, eds., TMS, 2014, pp. 85–92.

  33. [34] R.I. Guthrie: Engineering in Process Metallurgy, Clarendon Press, Oxford, 1992, p. 64.

    Google Scholar 

  34. [35] T. Yoshioka, T. Ideguchi, A. Karasev, Y. Ohba, and P.G. Jönsson: Steel Res. Int., 2018, vol. 89, pp. 1700287.

    Google Scholar 

  35. [36] D.L. Sponseller and R.A. Flinn: Trans. TMS AIME, 1964, vol. 230, pp. 876–88.

    CAS  Google Scholar 

  36. [37] B. Song and Q. Han: Metall. Mater. Trans. B, 1998, vol. 29, pp. 415–20.

    Google Scholar 

  37. [38] M. Berg, J. Lee, and D. Sichen: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1715-20.

    Google Scholar 

  38. [39] Q. Han, X. Zhang, D. Chen, and P. Wang: Metall. Trans. B, 1988, vol. 19, pp. 617–22.

    CAS  Google Scholar 

  39. [40] T. Kimura and H. Suito: Metall. Mater. Trans. B, 1994, vol. 25, pp. 33–42.

    CAS  Google Scholar 

  40. [41] H. Ohta and H. Suito: Metall. Mater. Trans. B, 1997, vol. 28, pp. 1131–9.

    CAS  Google Scholar 

  41. [42] M. Nadif and C. Gatellier: Rev. Metall., 1986, vol. 83, pp. 377–94.

    CAS  Google Scholar 

  42. [43] H. Suito and S. Cho: ISIJ Int., 1994, vol. 34, pp. 265–9.

    Google Scholar 

  43. [44] E.T. Turkdogan: Steel Res. Int., 1991, vol. 62, pp. 379–82.

    CAS  Google Scholar 

  44. D. Kumar: Development of a Reliable Kinetic Model for Ladle Refining of Steel. Doctoral Thesis, Carnegie Mellon University, 2018.

  45. [46] I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35, pp. 493–507.

    CAS  Google Scholar 

  46. [47] A. Ishii, M. Tate, T. Ebisawa, and K. Kawakami: Iron Steelmaker, 1983, vol. 10, pp. 35–42.

    Google Scholar 

  47. [48] D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1086–94.

    Google Scholar 

  48. [49] D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1095–104.

    Google Scholar 

  49. [50] K. Geels, D.B. Fowler, W. Kopp, and M. Rückert: Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, ASTM International, West Conshohocken, PA, 2007.

    Google Scholar 

  50. E.E. Underwood: Quantitative Stereology for Microstructural Analysis, Springer, Boston, MA, 1973.

    Google Scholar 

  51. D. Tang and P.C. Pistorius: AISTech 2019—Proceedings of the Iron & Steel Technology Conference, Association for Iron & Steel Technology, Warrendale, PA, 2019, pp. 1165–73.

  52. [53] S.R. Story, G.E. Goldsmith, R.J. Fruehan, G.S. Casuccio, M.S. Potter, and D.M. Williams: Iron Steel Technol., 2006, vol. 3, pp. 52–61.

    CAS  Google Scholar 

  53. [54] E.B. Pretorius, H.G. Oltmann, and B.T. Schart: AISTech 2013 Proc., 2013, pp. 993–1026.

    Google Scholar 

  54. [55] O. Wijk and V. Brabie: ISIJ Int., 1996, vol. 36, pp. S132–S135.

    Google Scholar 

  55. [56] H. Lachmund, Y. Xie, T. Buhles and W. Pluschkell: Steel Res. Int., 2003, vol. 74, pp. 77–85.

    CAS  Google Scholar 

  56. C. Dannert, H. Köchner, U. Strack-thor, P. Valentin, C. Bruch, L. Holappa, S. Louhenkilpi, and P. Väyrynen: Report EUR 25068, European Commission, Directorate-General for Research and Innovation, Research Fund for Coal and Steel Unit, 2012.

  57. [58] D. Kumar, K.C. Ahlborg, and P.C. Pistorius: AISTech 2017 Proc., 2017, pp. 2693–706.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the member companies of the Center for Iron and Steelmaking Research and the International Postdoctoral Exchange Fellowship Program (2017) by China Postdoctoral Council as well as use of the Materials Characterization Facility at Carnegie Mellon, supported by grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengsong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 11, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Kumar, D., Webler, B.A. et al. Calcium Modification of Inclusions via Slag/Metal Reactions. Metall Mater Trans B 51, 529–542 (2020). https://doi.org/10.1007/s11663-020-01774-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01774-3

Navigation