Skip to main content
Log in

Recovery of Iron from Pyrite Cinder Containing Non-ferrous Metals Using High-Temperature Chloridizing-Reduction-Magnetic Separation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study presents a new technique that uses high-temperature chloridizing -reduction-magnetic separation to recover iron from pyrite cinder containing non-ferrous metals. The effects of the reduction temperature, reduction time, and chlorinating agent dosage were investigated. The optimized process parameters were proposed as the following: CaCl2 dosage of 2 pct, chloridizing at 1398 K (1125 °C) for 10 minutes, reducing at 1323 K (1050 °C) for 80 minutes, grinding to a particle size of 78.8 pct less than 45 μm, and magnetic field intensity of 73 mT. Under the optimized conditions, the Cu, Pb, and Zn removal rates were 45.2, 99.2, and 89.1 pct, respectively. The iron content of the magnetic concentrate was 90.6 pct, and the iron recovery rate was 94.8 pct. Furthermore, the reduction behavior and separation mechanism were determined based on microstructure and phase change analyses using X-ray powder diffraction, scanning electron microscope, and optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. P. Li, Y. Q. Qiu, R. J. Xiang, and Y. X. Cheng: Min. Metall. Eng., 2014, vol. 34, pp. 79-82.

    Google Scholar 

  2. M. Giunti, D. Baroni, and E. Bacci: Bull. Environ. Contam. Toxicol., 2004, vol. 72, pp. 352-7.

    Article  Google Scholar 

  3. T. Vamerali, M. Bandiera, L. Coletto, F. Zanetti, N. M. Dickinson, and G. Mosca: Environ. Pollut., 2009, vol. 157, pp. 887-94.

    Article  Google Scholar 

  4. I. Alpa, H. Deveci, E. Y. Yazıcı, T. Türk, and Y.H. Süngünns: J. Hazard. Mater., 2009, vol. 166, pp. 144-9.

    Article  Google Scholar 

  5. Y. J. Zheng and Z. C. Liu: Power Technol., 2011, vol. 207, pp. 335-42.

    Article  Google Scholar 

  6. S. S. Liang, S. Cheng, T. C. Sun, and X.P. Hu: Min. Metall. Eng., 2011, vol. 31, pp. 104-8.

    Google Scholar 

  7. I. V. Kovkov and V. Z. Abdrakhimov: Glass Ceram., 2011, vol. 68, pp. 128-30.

    Article  Google Scholar 

  8. W. L. Bi, W. H. Wu, and J. Li: Hydrometallurgy China, 2011, vol. 30, pp. 229-30.

    Google Scholar 

  9. Z. F. Zeng and M. L. Li: Min. Metall. Eng., 2006, vol. 26, pp. 29-32.

    Google Scholar 

  10. B. He, X. Tian, Y. Sun, C. Yang, Y. Zeng, Y. Wang, S. Zhang, and Z. Pi: Hydrometallurgy, 2010, vol. 104, pp. 241-6.

    Article  Google Scholar 

  11. N. Tugrul, E. M. Derun, and M. Piskin: Powder Technol., 2007, vol. 176, pp. 72-6.

    Article  Google Scholar 

  12. D. Q. Zhu, D. Chen, J. Pan, and H. Q. Li: J. Iron Steel Res. Int., 2009, vol. 16, pp. 345-9.

    Article  Google Scholar 

  13. Metallurgical Laboratory of Central South College of Mining and Metallurgy: Chlorination Metallurgy, Metallurgy Industry Press, Beijing, 1978, pp. 68–93

  14. Z. T. Guo, Z. W. Zhang, L. Q. Wei, X. M. Zhang, and S. F. Ye: Comput. Appl. Chem., 2012, vol. 29, pp. 1321-5.

    Google Scholar 

  15. H. Sun, T. C. Sun, E. X. Gao, Y. Xu, and Q. Guo: Min. Metall. Eng., 2013, vol. 33, pp. 87-91.

    Google Scholar 

  16. X. L. Zhou, D.Q. Zhu, J. Pan, and T. J. Wu: ISIJ INT., 2015, vol. 55, pp. 1347-52.

    Article  Google Scholar 

  17. E. Radzyminska-Lenarcik, M. Sulewski, and W. Urbaniak: Pol. J. Environ. Stud., 2015, vol. 24, pp. 1277-82.

    Article  Google Scholar 

  18. F. Yin, P. Xing, Q. Li, C. Wang, and Z. Wang: Hydrometallurgy, 2014, vol. 149, pp. 189-94.

    Article  Google Scholar 

  19. A. H. Kaksonen, S. Särkijärvi, J. A. Puhakka, E. Peuraniemi, S. Junnikkala, and O. H. Tuovinen: Hydrometallurgy, 2016, vol. 159, pp. 46–53.

  20. Z. Guo, D. Zhu, J. Pan, T. Wu, and F. Zhang: Metals, 2016, vol. 86, pp. 1-17.

    Google Scholar 

  21. T. Qiu, X. Huang, and X. Yang: JOM, 2016, Vol. 68, pp. 548-55.

    Article  Google Scholar 

  22. D. Chen, D. Q. Zhu, and Y. Chen: ISIJ Int., 2014, vol. 54, pp. 2162-8.

    Article  Google Scholar 

  23. R. N. D. Siqueira, E. D. A. Brocchi, P. F. D. Oliveira, and M. S. Motta: Metall. Mater. Trans. B, 2014, vol. 45, pp. 66-75.

    Article  Google Scholar 

  24. X. She, J. Wang, G. Wang, Q. Xue, and X. Zhang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 488-95.

    Article  Google Scholar 

  25. N. Peng, B. Peng, L. Chai, M. Li, J. Wang, H. Yan, and Y. Yuan: Min. Eng., 2012, vol. 35, pp. 57-60.

    Article  Google Scholar 

  26. J. Han, W. Liu, W. Qin, Y. Zheng, and H. Luo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 686-93.

    Article  Google Scholar 

  27. H. Wang, Y. Li, J. Gao, M. Zhang, and Min Guo: Int. J. Min. Metall. Mater., 2016, vol. 23, pp. 146-155.

    Article  Google Scholar 

  28. R. Chairaksa-Fujimoto, K. Maruyama, T. Miki, and T. Nagasaka: Hydrometallurgy,2016, vol. 159, pp. 120-5.

    Article  Google Scholar 

  29. T. Miki, R. Chairaksa-Fujimoto, K. Maruyama, and T. Nagasaka: J. Hazard. Mater., 2016, vol. 302, pp. 90-6.

    Article  Google Scholar 

  30. H. Tang and H. Han: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 4192-200.

    Article  Google Scholar 

  31. J. W. Han, W. Liu, D. W. Wang, F. Jiao, W. Q. Qin: Metall. Mater. Trans. B, 2016, vol. 47, pp. 344-54.

    Article  Google Scholar 

  32. H. Matsuura and F. Tsukihashi: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 413-20.

    Article  Google Scholar 

  33. G. De Micco, G. G. Fouga, and A. E. Bohe: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 853-62.

    Article  Google Scholar 

  34. S. Ghassa, Z. Boruomand, H. Abdollahi, M. Moradian, and A. Akcil: Sep. Purif. Technol., 2014, vol. 136, pp. 241-9.

    Article  Google Scholar 

  35. A. Bakkar: J. Hazard. Mater., 2014, vol. 280, pp. 191-9.

    Article  Google Scholar 

  36. T. Chun and D. Zhu: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1-4.

    Article  Google Scholar 

  37. Q. Liu, C. Q. Wang, J. Tan, Z. L. Yin, Q. Y. Chen, Z. Liao, P. M. Zhang, and Y. Liu: J. Cent. South Univ., 2015, vol. 22, pp. 1256-63.

    Article  Google Scholar 

  38. Y. Wu, B. Shi, W. Ge, C. J. Yan, and X. Yang: JOM, 2015, vol. 67, pp. 361-8.

    Article  Google Scholar 

  39. M. D. Liu, Z. X. You, Z. W. Peng, X. Li, and G. H. Li: JOM, 2016, vol. 68, pp. 567-76.

    Article  Google Scholar 

  40. A. K. Mandal and O. P. Sinha: Metall. Mater. Trans. B, 2016. vol. 47, pp. 19-22.

    Article  Google Scholar 

  41. I. Barin: Thermochemical Data of Pure Substances, WILEY-VCH Verlag GmbH, Weinheim, 1993.

    Google Scholar 

  42. G. Liu, V. Strezov, J. A. Lucas, L. J. Wibberley: Thermochim. Acta, 2004, vol. 410, pp. 133–40.

    Article  Google Scholar 

  43. G. Z. Qiu, T. Jiang, J. C. Xu, and R. Z. Cai: Direct Reduction of Cold-bonded Pellets, Centre South University Press, Changsha, 2001, pp. 63–64, 176–81.

  44. R. Q. Peng: Metallurgy of Lead and Zinc, Science Technology Press, Beijing, 2003, pp. 116–24, 456–60.

  45. D. Z. Wang, G. Z. Qiu, and Y. H. Hu: Resources Processing, Science Press, Beijing, 2003, pp. 116.

    Google Scholar 

  46. R. J. FRUEHAN: Metall. Trans., 1977, 8B, 279–86.

    Article  Google Scholar 

  47. R. C. Nascimento, M. B. Mourão, J. D. T. Capocchi: Ironmak. Steelmak., 1999, vol. 26, pp. 182-6.

    Article  Google Scholar 

  48. L. Yi, Z. Huang, and T. Jiang: Powder Technol., 2013, vol. 235, pp. 1001-7.

    Article  Google Scholar 

  49. D. Chen, D. Zhu, L. Hong, Y. Chen, J. Fang, and L. Wu: J. Cent. South Univ., 2015, vol. 22, pp. 4154-61.

    Article  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the Basic Research Program of Jiangsu Province (No. BK20140337 and No. BK20130308), and the National Natural Science Foundation of China (No. 51504155 and No. 51574169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chen.

Additional information

Manuscript submitted June 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Guo, H., Xu, J. et al. Recovery of Iron from Pyrite Cinder Containing Non-ferrous Metals Using High-Temperature Chloridizing-Reduction-Magnetic Separation. Metall Mater Trans B 48, 933–942 (2017). https://doi.org/10.1007/s11663-017-0913-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0913-0

Keywords

Navigation