Skip to main content

Advertisement

Log in

Chlorination of Zinc Oxide between 723 and 973 K

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics of the chlorination of zinc oxide has been studied by thermogravimetry between 723 and 973 K. The starting temperature for the reaction of ZnO with chlorine is determined at about 498 K. The influence of gaseous flow rate, sample mass, temperature, and chlorine partial pressure in the reaction rate is analyzed. It is established that the reaction occurs under mixed control, being pore diffusion coupled with chemical reaction as the rate controlling step. An apparent reaction order of 0.5 with respect to chlorine partial pressure was determined. A kinetic model for the chlorination reaction of porous solids under mixed control determined an intrinsic reaction order of zero with respect to partial pressure of chlorine and an intrinsic activation energy of 249 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

concentration of Cl2, mol cm−3

C 0 :

concentration of Cl2 in the bulk, mol cm−3

\( D_{{\text{Cl}}_2} \) :

ordinary diffusion coefficient of Cl2 in the reaction mixture, cm2 s−1

D e :

effective diffusivity of Cl2 into the sample pores, cm2 s−1

D K :

Knudsen diffusion coefficient of Cl2 through sample pores, cms−1

E :

activation energy, kJ mol−1

E ap :

apparent activation energy, kJ mol−1

k(T):

reaction rate constant, mol s−1 cm−2

K*:

apparent rate constant, s−1

M x :

molecular weight of specie x, g mol−1

m 0 :

initial mass of the sample, g

n :

intrinsic reaction order, dimensionless

n ap :

apparent reaction order, dimensionless

pCl2 :

partial pressure of chlorine, kPa

P 0 :

partial pressure of chlorine in bulk, kPa.

r 0 :

sample radius, cm

r p :

pore radius, cm

R :

reaction rate, s−1

R m :

molar reaction rate, mol Cl2 reacted s−1

Rg :

gas constant, 82 cm3 atm K−1 mol−1

S e :

external surface, cm2

S v :

surface area per unit volume in the reaction zone, cm−1

t :

time, min or s

t 0.5 :

mean reaction time, s

T :

temperature, K

X :

distance normal to the external surface, cm

α :

reaction degree, dimensionless

ΔG°:

standard free energy change, kJ mol−1

ρ M :

molar density of ZnO sample

ρ ap :

apparent density, g cm−3

τ :

tortuosity factor, dimensionless

ω :

porosity, dimensionless

References

  1. R.E. Siemens, B.W. Jong, J.H. Russell: Conserv. Recycling, 1986, vol. 9 (2), pp. 189–96

    Article  Google Scholar 

  2. B.K. Thomas, D.J. Fray: Metall. Trans. B, 1981, vol. 12B, pp. 559–63

    Article  Google Scholar 

  3. B.K. Thomas, D.J. Fray: Metall. Trans. B, 1981, vol. 12B, pp. 281–85

    Article  Google Scholar 

  4. J.A. Chaudhary, J.D. Donaldson, S.M. Grimes: J. Chem. Tech. Biotechnol, 1994, vol. 61, pp. 293–97

    Article  Google Scholar 

  5. B. Zhang, X. Yan, K. Shibata, M. Tada, M. Hirasawa: High Temp. Mater. Proc., 1999, vol. 18 (4), pp. 197–211

    Google Scholar 

  6. J.K.S. Tee, D.J. Fray: Ironmaking and Steelmaking, 2005, vol. 32 (6), pp. 509–14

    Article  Google Scholar 

  7. R. Nonaka, K. Sugawara, and T. Sugawara: AIChE Annual Meeting Conf. Proc., AIChE, New York, NY, 2005, pp. 5709–20

  8. H. Matsuura, F. Tsukihashi: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 413–20

    Article  Google Scholar 

  9. Ullman’s Encyclopedia of Industrial Chemistry, 6th ed., 2002, electronic release

  10. F.J. Alvarez, G. De Micco, A.E. Bohé, and D.M. Pasquevich: Proc. Global Symp. on Recycling Waste Treatment and Clean Technology, Rewas, TMS, Warrendale, PA, INASMET, San Sebastian, Spain, 2004, vol. III, pp. 2707–16

  11. F.J. Alvarez, G. De Micco, A.E. Bohé, and D.M. Pasquevich: Final Report Technical Cooperation Regional Project No. RLA/4/018, IAEA, Vienna, Austria, Mar. 2005

  12. E.P. Barrett, L.G. Soguer, P.P. Halenda: J. Am. Soc., 1951, vol. 73, pp. 373–80

    Article  Google Scholar 

  13. S. Brunaver, P.H. Grumete, E. Teller: J. Am. Chem. Soc., 1938, vol. 60, pp. 309–19

    Article  Google Scholar 

  14. D.M. Pasquevich, A.M. Caneiro: Thermochimica Acta, 1989, vol. 156, pp. 275–83

    Article  Google Scholar 

  15. A. Roine: Outokumpu HSC Chemistry for Windows, 93001-ORGT version 2.0, Outokumpu Research Oy Information Service, Pori, Finland, 1994

  16. CRC Handbook of Chemistry and Physics, 85th ed., D.R. Lide, ed., CRC Press, Boca Raton, FL, 2004–2005, pp. 4–95

  17. S.H. Son, F. Tsukihashi: J. Phys. Chem. Solids, 2005, vol. 66, pp. 392–95

    Article  Google Scholar 

  18. S.H. Son, F. Tsukihashi: ISIJ Int., 2003, vol. 9, pp. 1356–61

    Google Scholar 

  19. G. De Micco: Ph.D. Thesis, Instituto Balseiro, Bariloche, Argentina, 2007, p. 159

  20. J. Szekely, J.W. Evans, H.Y. Sohn: Gas-Solid Reactions, Academic Press, New York, NY, 1976, pp. 232 and 115–17

    Google Scholar 

  21. A.W. Hills: Metall. Trans. B, 1978, vol. 98B, pp. 121–28

    Article  Google Scholar 

  22. F.C. Gennari, D.M. Pasquevich: Thermochimica Acta, 1996, vol. 284, pp. 325–39

    Article  Google Scholar 

  23. S. Basan, O. Güven: Thermochimica Acta., 1986, vol. 106, pp. 169–78

    Article  Google Scholar 

  24. D.M. Pasquevich, J.P. Gaviría, M. Esquivel, A.E. Bohé: Metall. Mater. Trans. B, 2006, vol. 37B (4), pp. 589–97

    Article  Google Scholar 

  25. F. Yang, V. Hlavacek: Powder Technol., 1999, vol. 102, pp. 177–83

    Article  Google Scholar 

  26. G.H. Geiger, D.R. Poirier: Transport Phenomena in Metallurgy, Addison-Wesley Publishing Company, Inc., Massachusetts, MA, 1973, p. 468

    Google Scholar 

  27. A. Wheeler: Advances in Catalysis, vol. 3, Academic Press Inc., New York, NY, 1951, pp. 249–327

    Google Scholar 

  28. R.C. Baetzold, G.A. Somorjai: J. Catalysis, 1976, vol. 45, pp. 94–105

    Article  Google Scholar 

  29. I. Gaballah, M. Djona, E. Allain: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 711–18

    Article  Google Scholar 

  30. M. Djona, E. Allain, I. Gaballah: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 703–10

    Article  Google Scholar 

  31. E. Allain, M. Djona, I. Gaballah: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 223–33

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad Nacional del Comahue for the financial support of this work. They also thank Daniel Serrano from “Lab. Materiales Porosos,” Centro Atómico Bariloche, for the pore size distribution analyses of the powder samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. de Micco.

Additional information

Manuscript submitted August 6, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Micco, G., Fouga, G. & Bohé, A. Chlorination of Zinc Oxide between 723 and 973 K. Metall Mater Trans B 38, 853–862 (2007). https://doi.org/10.1007/s11663-007-9089-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9089-3

Keywords

Navigation