Skip to main content
Log in

Improving Cleanliness of 95CrMo Drill Rod Steel by Slag Refining

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Industrial experiments were performed to improve the cleanliness of 95CrMo drill rod steel by slag refining. Higher steel cleanliness, lower corrosion, and small inclusions were obtained using the optimal slag composition (pctCaO/pctSiO2 = 3.7 to 4, pctCaO/pctAl2O3 = 6 to 8). Layered composite inclusions formed during vacuum decarburizing refining. CaS first precipitated around the spinel and subsequently formed inclusions in which solid CaS-CaO wrapped around the Al2O3-MgO-SiO2-CaO system as the modification and diffusion progressed. The thermodynamic equilibrium between slag and liquid 95CrMo steel at 1873 K (1600 °C) was also studied to understand the effect of slag composition on the oxygen content and absorption capacity for Al2O3. A mathematical model based on an investigation of slag viscosity and the interfacial tension between slag and inclusions was used to predict the size of critical inclusions for different slags. The evolution of typical inclusions is discussed in terms of the study of reactions between slag and steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McGregor K (1967) The Drilling of Rock. Books Ltd., London.

    Google Scholar 

  2. L. Zhang and B. G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.

    Article  Google Scholar 

  3. P. Juvonen: D.D. Thesis, Helsinki University of Technology, 2004.

  4. M. Jiang and X. H. Wang and W. J. Wang: Steel Res. Int., 2010, vol. 81, pp 759–65.

    Article  Google Scholar 

  5. C.J. Cai, S.B. Zheng, J. Chen, Z.Y. Ye, H.G. Li, and J.M. Yang: Mater. Sci. Forum, 2014, pp. 289–97.

  6. Yoon B, Heo K, Kim J, Sohn H (2002) Ironmak. Steelmak 29:214–17.

    Article  Google Scholar 

  7. S. Chen, M. Jiang, X. He, and X. Wang: Int. J. Met. Mater., 2012, vol.19, pp. 490–98.

    Article  Google Scholar 

  8. S. Yang, J. Li, C. Liu, L. Sun, and H. Yang: Metall. Mater. Trans. B, 2014, pp. 1–11.

  9. M. Valdez and G. S. Shannon and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450–57.

    Article  Google Scholar 

  10. J. H. Park and S. Lee and H. R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39, pp. 853–86.

    Article  Google Scholar 

  11. H. Ohta and H. Suito: ISIJ Int.,1996, vol. 36, 983–90.

    Article  Google Scholar 

  12. M. Andersson, M. Hallberg, L. Jonsson, and P. A. R. J O Nsson: Ironmak. Steelmak. 2002, vol.29, pp. 224–32.

    Article  Google Scholar 

  13. M. Jiang and X. Wang and J. Pak: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1248–59.

    Article  Google Scholar 

  14. J. W. Kim, S. K. Kim, D. S. Kim, Y. D. Lee, and P. K. Yang: ISIJ Int., 1996, vol. 36S, pp.140–43.

    Article  Google Scholar 

  15. J. H. Park and D. S. Kim: Metall. Mater. Trans. B, 2005, vol.36, pp. 495–502.

    Article  Google Scholar 

  16. W. Ma, Y. Bao, M. Wang, and D. W. Zhao: Ironmak. Steelmak, 2014, vol. 41, pp. 26–30.

    Article  Google Scholar 

  17. P. Yan, S. Huang, L. Pandelaers, J. Van Dyck, M. Guo, and B. Blanpain: Metall. Mater. Trans. B, 2013, vol 44, pp. 1105–19.

    Article  Google Scholar 

  18. W. Yang, X. Wang, L. Zhang, Q. Shan, and X. Liu: Steel Res. Int., 2013, vol.84, pp. 473–89.

    Article  Google Scholar 

  19. M. Jiang: D.D. Thesis, University of Sicence and Technology Beijing, 2008.

  20. J. Strandh, K. Nakajima, R. Eriksson, and P. A. R. J O Nsson: ISIJ Int. 2005, vol. 45, pp. 1838–47.

    Article  Google Scholar 

  21. J. Strandh, K. Nakajima, R. Eriksson, and P. A. R. J O Nsson: ISIJ Int. 2005, vol. 45, pp. 1597–1606.

    Article  Google Scholar 

  22. G. Zhang, K. Chou, Q. Xue, and K. C. Mills: Metall. Mater. Trans. B, 2012, vol. 43, pp. 64–72.

    Article  Google Scholar 

  23. G. Zhang and K. Chou and K. Mills: ISIJ Int., 2012, vol. 52, pp. 355–62.

    Article  Google Scholar 

  24. J. Choi and H. Lee: ISIJ Int., 2003, vol. 43, pp. 1348–s55.

    Article  Google Scholar 

  25. T. Lis: Metalurgija. 2009, vol. 48, pp. 95.

    Google Scholar 

  26. N. Verma, P. C. Pistorius, R. J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 42B, 2011, vol. 42, 711–19.

  27. N. Verma, P. C. Pistorius, R. J. Fruehan, M. Potter, M. Lind, and S. R. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720–29.

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the National Science Foundation of China (Nos. 51474085 and 51304016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Additional information

Manuscript submitted November 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, S., Li, J. et al. Improving Cleanliness of 95CrMo Drill Rod Steel by Slag Refining. Metall Mater Trans B 47, 99–107 (2016). https://doi.org/10.1007/s11663-015-0481-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0481-0

Keywords

Navigation