Skip to main content
Log in

Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The laboratory experiments, thermodynamic analysis, dynamic analysis, and industrial trials were carried out to investigate the influence of refining slag on the evolution and removal of oxide inclusions in 55SiCrA spring steel. The reduction in basicity and Al2O3 content in refining slag can reduce the [Al]s content in the molten steel, which is conducive to the control of the low melting point of inclusions. However, the refining slag with excessively low basicity transfers the oxygen element to molten steel and increases the Al2O3 content in inclusions, which is harmful to the control of inclusions. According to the chemical compositions of inclusions and refining slag in laboratory experiments, their physical parameters were calculated. The maximum separation ratio and the moving time of inclusions to reach the maximum separation ratio (tmax) of inclusions under different laboratory experimental conditions were studied. The maximum separation ratio of inclusions is positively correlated with the overall wettability (cosθIMS) among the slag, steel, and inclusions. The maximum separation ratio of inclusions obtained by laboratory experiments is between 85% and 91%. The tmax decreases with the decline in basicity and Al2O3 content of refining slag, but excessively low basicity will increase the tmax. The basicity of refining slag in the range of 0.88–0.97 and the content of Al2O3 less than 6% is not only conducive to reducing the content of Al2O3 and the melting point of inclusions but also beneficial to removing the inclusions to the slag. The slag system shows good metallurgical results in industrial trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. Ozturk, S. Toros, S. Kilic, J. Iron Steel Res. Int. 16 (2009) No. 6, 41–46.

    Article  Google Scholar 

  2. F. Hayat, H. Uzun, J. Iron Steel Res. Int. 18 (2011) No. 8, 65–72.

    Article  Google Scholar 

  3. G. Niu, Y.L. Chen, H.B. Wu, X. Wang, M.F. Zuo, Z.J. Xu, J. Iron Steel Res. Int. 23 (2016) 1323–1332.

    Article  Google Scholar 

  4. C. Chen, Z. Jiang, Y. Li, M. Sun, Q. Wang, K. Chen, H. Li, ISIJ Int. 60 (2020) 617–627.

    Article  Google Scholar 

  5. H. Suito, R. Inoue, ISIJ Int. 36 (1996) 528–536.

    Article  Google Scholar 

  6. Y. Murakami, S. Kodama, S. Konuma, Int. J. Fatigue 11 (1989) 291–298.

    Article  Google Scholar 

  7. L.P. Wu, J.G. Zhi, J.S. Zhang, B. Zhao, Q. Liu, Materials 14 (2021) 5262.

    Article  Google Scholar 

  8. Kobe Steel Ltd., Production of high-Si clean steel for spring, Japan, JPS61136612A, 1984.

  9. C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, H. Schifferl, Ironmak. Steelmak. 30 (2003) 165–169.

    Article  Google Scholar 

  10. H. Yang, J. Ye, X. Wu, Y. Peng, Y. Fang, X. Zhao, Metall. Mater. Trans. B 47 (2016) 1435–1444.

    Article  Google Scholar 

  11. J.S. Park, J.H. Park, Metall. Mater. Trans. B 45 (2014) 953–960.

    Article  Google Scholar 

  12. J. Guo, S. Han, X. Chen, H. Guo, Y. Yan, Metall. Mater. Trans. B 51 (2020) 1813–1823.

    Article  Google Scholar 

  13. K. Nakajima, K. Okamura, in: Proceedings of the 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, Japan, 1992, pp. 505–510.

  14. J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1838–1847.

    Article  Google Scholar 

  15. D. Bouris, G. Bergeles, Metall. Mater. Trans. B 29 (1998) 641–649.

    Article  Google Scholar 

  16. S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, H.B. Yang, Metall. Mater. Trans. B 45 (2014) 2453–2463.

    Article  Google Scholar 

  17. C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, X.G. Li, Metall. Mater. Trans. B 47 (2016) 1882–1892.

    Article  Google Scholar 

  18. S.H. Chen, M. Jiang, X.F. He, X.H. Wang, Int. J. Miner. Metall. Mater. 19 (2012) 490–498.

    Article  Google Scholar 

  19. C. Wang, Q. Liu, J. Zhang, J. Chen, D. Lin, X. Wang, J. Zhu, in: Int. Symp. Proceedings of the 12th High-Temp. Metall. Process., Proc. Symp., Springer, Anaheim, USA, 2022, pp. 445–455.

  20. Y.G. Chi, Z.Y. Deng, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 440–450.

    Article  Google Scholar 

  21. J.Y. Li, G.G. Cheng, ISIJ Int. 59 (2019) 2013–2023.

    Article  Google Scholar 

  22. C. Wang, Y.S. Han, J.S. Zhang, D. Xiao, J. Yang, J. Chen, Q. Liu, Ironmak. Steelmak. 48 (2021) 466–476.

    Article  Google Scholar 

  23. C. Chen, M. Sun, X. Chen, B. Wang, J. Zhou, Z. Jiang, Steel Res. Int. 92 (2021) 2100507.

    Google Scholar 

  24. J. Kawahara, K. Tanabe, T. Banno, M. Yoshida, Wire J. Int. 25 (1992) 55–61.

    Google Scholar 

  25. T. Abe, Y. Furuya, S. Matsuoka, Fatigue Fract. Eng. Mater. Struct. 27 (2004) 159–167.

    Article  Google Scholar 

  26. J. Björklund, M. Andersson, P. Jönsson, Ironmak. Steelmak. 34 (2007) 312–324.

    Article  Google Scholar 

  27. B.H. Yoon, K.H. Heo, J.S. Kim, H.S. Sohn, Ironmak. Steelmak. 29 (2002) 214–217.

    Article  Google Scholar 

  28. S. Basu, A.K. Lahiri, S. Seetharaman, Metall. Mater. Trans. B 39 (2008) 447–456.

    Article  Google Scholar 

  29. F. Ferey, V. Briaud, P. Violet, A. Pisch, J. Phase Equilib. Diffus. 41 (2020) 443–456.

    Article  Google Scholar 

  30. D.S.R. Coradini, A.R.R. de Lima, R. Deike, V.B. Telles, J.R. de Oliveira, J. Mater. Res. Technol. 9 (2020) 7508–7517.

    Article  Google Scholar 

  31. K. Steneholm, M. Andersson, M. Nzotta, P. Jönsson, Steel Res. Int. 78 (2007) 522–530.

    Article  Google Scholar 

  32. X.H. Huang, Theory of iron and steel metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, China, 2002.

    Google Scholar 

  33. G. Bernard, P. Riboud, G. Urbain, Revue de Metallurgie, Cahiersd Informations Techniques 78 (1981) 421–433.

    Article  Google Scholar 

  34. W. Yang, C. Guo, C. Li, L. Zhang, Metall. Mater. Trans. B 48 (2017) 2267–2273.

    Article  Google Scholar 

  35. L. Wang, X. Wang, J. Zhang, W. Wang, X. Zhuo, Iron and Steel 39 (2004) 21–23.

    Google Scholar 

  36. J. Yang, X.H. Wang, M. Jiang, W.J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 7, 8–14.

    Article  Google Scholar 

  37. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, Z. Cao, Metall. Mater. Trans. B 47 (2016) 282–290.

    Article  Google Scholar 

  38. H. Zhang, Y. Peng, S. Zhang, C. Liu, R. Cheng, H. Ni, Metall. Mater. Trans. B 53 (2022) 702–715.

    Article  Google Scholar 

  39. H.P. Du, Special Steel 36 (2015) No. 4, 41–44.

    Google Scholar 

  40. J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.

    Article  Google Scholar 

  41. J. Xin, L. Guo, L. Jiao, Chin. J. Process. Eng. 17 (2017) 395–399.

    Google Scholar 

  42. K.C. Mills, Slags model (ed 1.07), National Physical Laboratory, London, UK, 1991.

    Google Scholar 

  43. J. Wikström, K. Nakajima, L. Jonsson, P. Jönsson, Steel Res. Int. 79 (2008) 826–834.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Advanced Metallurgy Foundation (No. 41621005), and the Subject of Xiangtan Branch, Hunan Valin Iron & Steel Co., Ltd., China (No. 2018386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu.

Ethics declarations

Conflict of interest

The manuscript has not been published before and is not being considered for publication elsewhere. All authors have contributed to this manuscript for important intellectual content and review and approved the final manuscript. The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tang, W., Zhang, Js. et al. Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel. J. Iron Steel Res. Int. 30, 1755–1768 (2023). https://doi.org/10.1007/s42243-023-00941-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00941-5

Keywords

Navigation