Skip to main content
Log in

Deformation of Aluminum Investigated by Digital Image Correlation: Evidence of Simultaneous Crystal Slip and Grain Boundary Sliding

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We investigate the multiscale micromechanical behavior of nearly pure polycrystalline aluminum exhibiting randomly oriented coarse grains (ca. 300 μm in size) between room temperature and 400 °C. We present the results from in situ mechanical testing obtained through scanning electron microscopy and full-field strain measurements by digital image correlation (DIC) during uniaxial compression, with controlled displacement rate. Direct observation of the process of developing strain heterogeneities allows for identification of the active mechanisms, characterization of their interactions, and quantification of their respective contributions to the overall strain. The full-field strain measurements were carried out, from the sample scale, to the scales of the aggregate of grains, and finally the single grain. DIC analysis was performed thanks to specific surface marking patterns obtained by electron microlithography appropriate for the different scales of interest. The strain localization patterns showed dominant crystal plasticity. Except at room temperature, we always observed simultaneous and continuous activity of grain boundary sliding, whose relative contribution increased with temperature. We suggest that for coarse-grained microstructures, grain boundary sliding acts as a complementary mechanism for the accommodation of local plastic incompatibilities inherent to the anisotropy of crystal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L. Allais, M. Bornert, T. Bretheau, and D. Caldemaison: Acta Metall. Mater., 1994, vol. 42, pp. 3865–80.

    Article  CAS  Google Scholar 

  2. M. Bourcier, M. Bornert, A. Dimanov, E. Heripre, and J.L. Raphanel: J. Geophys. Res. Solid Earth, 2013, vol. 118, pp. 511–26.

    Article  CAS  Google Scholar 

  3. V. Doquet and B. Barkia: Mech. Mater., 2016, vol. 103, pp. 18–27.

    Article  Google Scholar 

  4. P. Doumalin and M. Bornert: in Proc. Interferom. Speckle Light: Theory Appl., P. Jacquot and J.M. Fournier, eds., Springer, Berlin, Heidelberg. 2000, pp. 67–74. https://doi.org/10.1007/978-3-642-57323-1_9

  5. A. Goyal, V. Doquet, and A. Pouya: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1109–22.

    Article  Google Scholar 

  6. A. Gaye, M. Bornert, N. Lenoir, K. Sab, A. Dimanov, M. Bourcier, E. Héripré, J.L. Raphanel, H. Gharbi, D. Picard, W. Ludwig: Am. Rock Mech. Ass., 2014, ARMA 14-7473.

  7. Z. Song, R. Niu, X. Cui, E.V. Bobruk, M.Y. Murashkin, N.A. Enikeev, J. Gu, M. Song, V. Bhatia, S.P. Ringer, R.Z. Valiev, and X. Liao: Acta Mater., 2023, vol. 246, p. 118671. https://doi.org/10.1016/j.actamat.2023.118671.

    Article  CAS  Google Scholar 

  8. J. Dautriat, M. Bornert, N. Gland, A. Dimanov, and J.L. Raphanel: Tectonophysics, 2011, vol. 503, pp. 100–16.

    Article  Google Scholar 

  9. E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos, M. Bornert, and D. Caldemaison: Int. J. Plast., 2007, vol. 23, pp. 1512–39. https://doi.org/10.1016/j.ijplas.2007.01.009.

    Article  CAS  Google Scholar 

  10. M.A. Sutton, N. Li, D.C. Joy, A.P. Reynolds, and X. Li: Exp. Mech., 2007, vol. 47, pp. 775–87. https://doi.org/10.1007/s11340-007-9042-z.

    Article  Google Scholar 

  11. R. Quey, P. Dawson, and J.H. Driver: IOP Conf.: Ser. Mater. Sci. Eng., 2015, vol. 89, p. 012011.

    Google Scholar 

  12. P. Doumalin, M. Bornert, and D. Caldemaison: Proc. Int. Conf. Adv. Technol. Exp. Mech., JSME, 1999, vol. 1, pp. 81–86.

    Google Scholar 

  13. Z. Hadjem-Hamouche, K. Derrien, E. Héripré, and J.-P. Chevalier: Mat. Sci. Eng. A, 2018, vol. 724, pp. 594–605. https://doi.org/10.1007/s11340-012-9628-y.

    Article  CAS  Google Scholar 

  14. L. Wang, M. Bornert, E. Héripré, S. Chanchole and A. Tanguy: Strain, 2014, vol. 50(5), pp 370–380.

  15. R. Quey, D. Piot, and J.H. Driver: Acta Mater., 2010, vol. 58, pp. 1629–42.

    Article  CAS  Google Scholar 

  16. T.R. Bieler, P. Eisenlohr, H.J. Phukan, and M.A. Crimp: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 212–26.

    Article  CAS  Google Scholar 

  17. T.R. Bieler, R. Alizadeh, M. Peña-Ortega, and J. Llorca: Int. J. Plast., 2019, vol. 118, pp. 269–90.

    Article  CAS  Google Scholar 

  18. M.A. Linne, A. Venkataraman, M.D. Sangid, and S. Daly: Exp. Mech., 2019, vol. 59, pp. 643–58.

    Article  CAS  Google Scholar 

  19. R. Alizadeh, M. Peña-Ortega, T.R. Bieler, and J. Llorca: Scripta Mater., 2020, vol. 178, pp. 408–12.

    Article  CAS  Google Scholar 

  20. A. Mecif, B. Bacroix, and P. Franciosi: Acta Mater., 1997, vol. 45, pp. 371–81.

    Article  CAS  Google Scholar 

  21. A. El Sabbagh: Thèse de Doctorat en Mécanique des Matériaux de l’Ecole Polytechnique, Palaiseau, 2018.

  22. A.D. Kammers and S. Daly: Meas. Sci. Technol., 2011, vol. 22, p. 125501. https://doi.org/10.1088/0957-0233/22/12/125501.

    Article  CAS  Google Scholar 

  23. A.D. Kammers and S. Daly: Exp. Mech., 2013, vol. 53, pp. 1333–41.

    Article  Google Scholar 

  24. Y. Zhang, T.D. Topping, E.J. Lavernia, and S.R. Nut: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 47–54. https://doi.org/10.1007/s11661-013-1805-9.

    Article  CAS  Google Scholar 

  25. Y. Barranger, P. Doumalin, J.C. Dupré, and A. Germaneau: Strain, 2012, vol. 48, pp. 357–65. https://doi.org/10.1111/j.1475-1305.2011.00831.x.

    Article  Google Scholar 

  26. P. Reu: Exp. Techn., 2014, vol. 38, pp. 1–3. https://doi.org/10.1111/ext.12111.

    Article  Google Scholar 

  27. L.P. Luong, R. Bonnaire, J.-N. Périé, Q. Sirvin and L. Penazzi: Strain, 2021, 57(5), pp. 1–19. https://doi.org/10.1111/str.12388

    Article  Google Scholar 

  28. Y.L. Dong and B. Pan: Exp. Mech., 2017, vol. 57, pp. 1161–81. https://doi.org/10.1007/s11340-017-0283-1.

    Article  Google Scholar 

  29. M. Grédiac, B. Blaysat, and F. Sur: Exp. Mech., 2020, vol. 60, pp. 509–34. https://doi.org/10.1007/s11340-019-00579-z.

    Article  Google Scholar 

  30. X. Hu, Z. Xie, and F. Liu: Measurement, 2021, vol. 173, p. 108618. https://doi.org/10.1016/j.measurement.2020.108618.

    Article  Google Scholar 

  31. A. Soula, D. Locq, D. Boivin, Y. Renollet, P. Caron, and Y. Bréchet: J. Mater. Sci., 2010, vol. 45, pp. 5649–59. https://doi.org/10.1007/s10853-010-4630-1.

    Article  CAS  Google Scholar 

  32. G. Martin, C.W. Sinclair, and J.-H. Schmitt: Scripta Mater., 2013, vol. 68, pp. 695–98. https://doi.org/10.1016/j.scriptamat.2013.01.017.

    Article  CAS  Google Scholar 

  33. G. Martin, D. Caldemaison, M. Bornert, C. Pinna, Y. Bréchet, M. Véron, J.D. Mithieux, and T. Pardoen: Exp. Mech., 2013, vol. 53(2), pp. 205–15. https://doi.org/10.1007/s11340-012-9628-y.

    Article  CAS  Google Scholar 

  34. K. Thibault, D. Locq, P. Caron, D. Boivin, Y. Renollet, and Y. Bréchet: Mater. Sci. Eng. A, 2013, vol. 588, pp. 14–21.

    Article  CAS  Google Scholar 

  35. T. Dessolier, P. Lhuissier, F. Roussel-Dherbey, F. Charlot, C. Josserond, J.-J. Blandin, and G. Martin: Mater. Sci. Eng. A, 2020, vol. 775, p. 138957. https://doi.org/10.1016/j.msea.2020.138957.

    Article  CAS  Google Scholar 

  36. A.D. Kammers and S. Daly: Exp. Mech., 2013, vol. 53(9), pp. 1743–61. https://doi.org/10.1007/s11340-013-9782-x.

    Article  Google Scholar 

  37. A. Weidner and H. Biermann: Adv. Eng. Mater., 2021, vol. 23, p. 2001409. https://doi.org/10.1002/adem.202001409.

    Article  Google Scholar 

  38. M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 1782–96.

    Article  CAS  Google Scholar 

  39. F. Ashby: Acta Metall., 1972, vol. 20, pp. 887–97.

    Article  CAS  Google Scholar 

  40. F. Ashby: Adv. Appl. Mech., 1982, vol. 23, pp. 117–77.

    Article  Google Scholar 

  41. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, New York, 1982, p. 166.

    Google Scholar 

  42. J. Weertman: J. Appl. Phys., 1957, vol. 28, pp. 1185–89.

    Article  Google Scholar 

  43. J. Weertman: J. Appl. Phys., 1957, vol. 28, p. 362.

    Article  CAS  Google Scholar 

  44. H. Lüthy, R.A. White, and O.D. Sherby: Mater. Sci. Eng., 1979, vol. 39, pp. 211–16.

    Article  Google Scholar 

  45. B. Fazan, O.D. Sherby, and J.E. Dorn: J. Met., 1954, vol. 6, pp. 919–22.

    CAS  Google Scholar 

  46. N. Combe, F. Mompiou, and M. Legros: Phys. Rev. Mater., 2017, vol. 1, pp. 033605 1–7.

    Google Scholar 

  47. H.P. Karnathaler: Philos. Mag. A, 1978, vol. 38, pp. 141–56. https://doi.org/10.1080/01418617808239225.

    Article  Google Scholar 

  48. M. Carrard and J.L. Martin: Philos. Mag. A, 1987, vol. 56(3), pp. 391–405.

    Article  CAS  Google Scholar 

  49. D. Caillard and J.L. Martin: Int. J. Mater. Res., 2009, vol. 100, pp. 1403–10. https://doi.org/10.3139/146.110190.

    Article  CAS  Google Scholar 

  50. R. Le Hazif and J.-P. Poirier: Acta Metall., 1975, vol. 23, pp. 865–71.

    Article  Google Scholar 

  51. B. Bacroix, and J.J. Jonas: Textures Microstruct., 1987, vol. 8/9, pp. 267–311.

  52. A. Couret and D. Caillard: Acta Metall., 1988, vol. 36, pp. 2515–24.

    Article  CAS  Google Scholar 

  53. D. Caillard and J.L. Martin: J. Phys., 1989, vol. 50, pp. 2455–73.

    Article  CAS  Google Scholar 

  54. A. Albou, A. Borbely, C. Maurice, and J.H. Driver: Philos. Mag., 2011, vol. 91, pp. 3981–4000.

    Article  CAS  Google Scholar 

  55. M. Arzaghi, B. Beausir, and L.S. Tóth: Acta Mater., 2009, vol. 57(8), pp. 2440–53. https://doi.org/10.1016/j.actamat.2009.01.041

  56. F.D. Rosi and C.H. Mathewson: JOM, 1950, vol. 2, pp. 1159–67. https://doi.org/10.1007/BF03399117.

    Article  Google Scholar 

  57. D. Picard, A. Dimanov, and J.L. Raphanel: Mater. Sci. Eng. A, 2018, vol. 732, pp. 284–97.

    Article  CAS  Google Scholar 

  58. M.F. Ashby and R.A. Verall: Acta Metall., 1973, vol. 21, pp. 149–63.

    Article  CAS  Google Scholar 

  59. R. Raj and M.F. Ashby: Metall. Trans., 1971, vol. 2, pp. 1113–27.

    Article  Google Scholar 

  60. A. Dimanov, G. Dresen, E. Rybacki, and R. Wirth: J. Struct. Geol., 2007, vol. 29, pp. 1049–69.

    Article  Google Scholar 

  61. C.N. Ahlquist and R.A. Menezes: Mater. Sci. Eng., 1971, vol. 7, pp. 223–24.

    Article  CAS  Google Scholar 

  62. T.G. Langdon: Philos. Mag., 1971, vol. 21, pp. 689–700.

    Google Scholar 

  63. M. Hillert and G.R. Purdy: Acta Metall., 1978, vol. 26, pp. 333–40. https://doi.org/10.1016/0001-6160(78)90132-3.

    Article  CAS  Google Scholar 

  64. M. Hillert: Scripta Metall., 1983, vol. 17, pp. 237–40. https://doi.org/10.1016/0036-9748(83)90105-9.

    Article  Google Scholar 

  65. R.W. Balluffi and J.W. Cahn: Acta Metall., 1981, vol. 29, pp. 493–500. https://doi.org/10.1016/0001-6160(81)90073-0.

    Article  CAS  Google Scholar 

  66. D.L. Beke, Yu. Kaganovskii, and G.L. Katona: Prog. Mater. Sci., 2018, vol. 98, pp. 625–74.

    Article  CAS  Google Scholar 

  67. O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan: Acta Mater., 2014, vol. 77, pp. 401–10. https://doi.org/10.1016/j.actamat.2014.06.010J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J.E. Harris: Nature, 1963, vol. 200, p. 1197. https://doi.org/10.1038/2001197a0.

    Article  CAS  Google Scholar 

  69. P. Duval and O. Castelnau: J. Phys. IV, 1995, vol. 05, pp. 197–205.

    Google Scholar 

  70. M. Montagnat and P. Duval: Earth Planet. Sci. Lett., 2000, vol. 183, pp. 179–86. https://doi.org/10.1016/S0012-821X(00)00262-4.

    Article  CAS  Google Scholar 

  71. M. Tonks, P. Millett, W. Cai, and D. Wolf: Scripta Mater., 2019, vol. 63(11), pp. 1049–52. https://doi.org/10.1016/j.scriptamat.2010.07.034.

    Article  CAS  Google Scholar 

  72. S.B. Lee, J. Jung, and H.N. Han: Materials, 2020, vol. 13, p. 360. https://doi.org/10.3390/ma13020360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. A. Lens, C. Maurice, and J.H. Driver: Mater. Sci. Eng. A, 2005, vol. 403, pp. 144–53. https://doi.org/10.1016/j.msea.2005.05.010.

    Article  CAS  Google Scholar 

  74. M.L. Taheri, D. Molodov, G. Gottstein, and A.D. Rollett: Z. Metall., 2005, vol. 96, pp. 1166–70. https://doi.org/10.3139/146.101157.

    Article  CAS  Google Scholar 

  75. A. Rajabzadeh, F. Mompiou, S. Lartigue-Korinek, N. Combe, M. Legros, and D.A. Molodov: Acta Mater., 2014, vol. 77, pp. 223–35.

    Article  CAS  Google Scholar 

  76. N. Combe, F. Mompiou, and M. Legros: Phys. Rev. B: Condens. Matter and Mater. Phys, 2016, vol. 93, p. 024109.

    Article  Google Scholar 

  77. N. Combe, F. Mompiou, and M. Legros: Phys. Rev. Mater., 2019, vol. 3, p. 060601 1–6.

    CAS  Google Scholar 

  78. M. Larranaga, F. Mompiou, M. Legros, and N. Combe: Phys. Rev. Mater., 2020, vol. 4, p. 123606.

    Article  CAS  Google Scholar 

  79. N. Vigano, A. Tanguy, S. Hallais, A. Dimanov, M. Bornert, K.J. Batenburg, and W. Ludwig: Sci. Rep., 2016, vol. 6, pp. 1–9.

    Article  Google Scholar 

  80. Y. Palizdar, D. San Martin, M. Ward, R.C. Cochrane, R. Brydson, and A.J. Scott: Mater. Charact., 2013, vol. 84, pp. 28–33.

    Article  CAS  Google Scholar 

  81. M. Verma and R. Mukherjee: J. Appl. Phys., 2021, vol. 130, p. 025305.

    Article  CAS  Google Scholar 

  82. G. Daveau: Thèse Ecole Centrale, Paris, 2012. https://tel.archives-ouvertes.fr/tel-00740650.

Download references

Acknowledgments

We thank Vincent de Greef, Erik Guimbretière, Hakim Gharbi, and Jean-Christophe Eytard for their precious technical support. We also warmly thank Romain Quey (Lab. George Friedel, Ecole des Mines de Saint-Etienne) for kindly providing the aluminum alloy and Eva Héripré (MSSMAT, Ecole Centrale Supelec) for access and help with the FIB.

Funding

This work has been supported by the Fondation EDF, sponsoring the chair “Energies durables” under the supervision of Franck Carré.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dimanov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimanov, A., El Sabbagh, A., Raphanel, J. et al. Deformation of Aluminum Investigated by Digital Image Correlation: Evidence of Simultaneous Crystal Slip and Grain Boundary Sliding. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07349-0

Navigation