Skip to main content
Log in

Cryomilling for the fabrication of a particulate B4C reinforced Al nanocomposite: Part I. Effects of process conditions on structure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metal matrix composites (MMCs) are a relatively new category of engineering materials, which provide tailorable properties to meet specific needs. Cryomilling, mechanical milling at cryogenic temperatures, was employed in this study to fabricate nanostructured metal matrix composite powder with nanocrystalline aluminum alloys as the matrix and particulate B4C as the reinforcement. Cryomilling provided an extremely low temperature for the processing of this composite, which prevented the formation of secondary phases that are detrimental to mechanical properties. A uniform distribution of B4C in the Al and a clean strong interface between them were achieved. The contamination that results from cryomilling was analyzed. The effects of the B4C addition and the process control agent (PCA) on the microstructure of the composite powder were investigated. Results indicate that these additives had significant, yet opposing, effects on powder yield; a slight effect on contamination, particle size, and particle morphology; and no detectable effect on grain size refinement in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Hale: J. Mater. Sci., 1976, vol. 11, pp. 2105–41.

    Article  CAS  Google Scholar 

  2. D. J. Lloyd: Int. Mater. Rev., 1994, vol. 39, pp. 1–23.

    CAS  Google Scholar 

  3. D.C. Halverson, A.J. Pyzik, I.A. Aksay, and W.E. Snowden: J. Am. Ceram. Soc., 1989, vol. 72, pp. 775–80.

    Article  CAS  Google Scholar 

  4. B.S. Lee and S. Kang: Mater. Chem. Phys., 2001, vol. 67, pp. 249–55.

    Article  CAS  Google Scholar 

  5. A.J. Pyzik and D.R. Beaman: J. Am. Ceram. Soc., 1995, vol. 78, pp. 305–12.

    Article  CAS  Google Scholar 

  6. J.C. Viala, J. Bouix, G. Gonzalez, and C. Esnouf: J. Mater. Sci., 1997, vol. 32, pp. 4559–73.

    Article  CAS  Google Scholar 

  7. K.B. Lee, H.S. Sim, S.Y. Cho, and H. Kwon: Mater. Sci. Eng., A, 2001, vol. A302, pp. 227–34.

    CAS  Google Scholar 

  8. A.J. Pyzik and I.A. Aksay: Processing of Ceramics and Metal Matrix Composites, Proc. Int. Symp., Pergamon Press, Elmsford, NY, 1989, pp. 269–80.

    Google Scholar 

  9. K.B. Lee, H.S. Sim, S.Y. Cho, and H. Kwon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2142–47.

    Article  CAS  Google Scholar 

  10. M. Kouzeli and A. Mortensen: Acta Mater., 2002, vol. 50, pp. 39–51.

    Article  CAS  Google Scholar 

  11. R.U. Vaidya, S.G. Song, and A.K. Zurek: Phil. Mag. A, 1994, vol. 70, pp. 819–36.

    CAS  Google Scholar 

  12. J.P. Lucas, J.J. Stephens, and F.A. Greulich. Mater. Sci. Eng., A, 1991, vol. A131, pp. 221–30.

    CAS  Google Scholar 

  13. G.M. Bond and O.T. Inal: Comp. Eng., 1995, vol. 5, pp. 9–16.

    Article  CAS  Google Scholar 

  14. A. Daoud and W. Reif: J. Mater. Proc. Technol., 2002, vol. 123, pp. 313–18.

    Article  CAS  Google Scholar 

  15. K.B. Lee, H.S. Sim, S.W. Heo, H.R. Yoo, S.Y. Cho, and H. Kwon: Compos. Part A, 2002, vol. 33, pp. 709–15.

    Google Scholar 

  16. M. Naranjo, J.A. Rodriguez, and E.J. Herrera: Scripta Mater., 2003, vol. 49, pp. 65–69.

    Article  CAS  Google Scholar 

  17. P.T.B. Shaffer: in Engineered Materials Handbook, M.M. Gauthier, ed., ASM INTERNATIONAL, Materials Park, OH, 1991, vol. 4, pp. 804–1002.

    Google Scholar 

  18. F. Thevenot: Key Eng. Mater. (Adv. Ceram.), 1991, vols. 56–57, pp. 59–88.

    Google Scholar 

  19. R.A. Carden: Sintered Metal-Matrix Composites Manufactured with Boron Carbide Doped for Improved Bonding, Alyn Corporation, Irvine, CA, 1996, application no. US 94-183728.

    Google Scholar 

  20. A.R. Begg and A.D. Tarrant: Preparation of Composites, British Petroleum Co., London, United Kingdom, 1988, application no. US 4749545.

    Google Scholar 

  21. H. Zhang, M.W. Chen, K.T. Ramesh, J. Ye, J.M. Schoenung, and E.S.C. Chin: Mater. Sci. Eng. A, in press.

  22. J.H. Weber and R.D. Schelleng: Dispersion Strengthened Aluminum Alloys, TMS, Warrendale, PA, 1998, pp. 467–82.

    Google Scholar 

  23. V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2335–43.

    Article  CAS  Google Scholar 

  24. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  25. A.D. Jatkar, R.D. Schelleng, and A.J. Varall, Jr.: Process for Producing Composite Materials, MPD Technology Corp, WV, 1986, application no. US 4623388.

    Google Scholar 

  26. M.S. Zedalis and P.S. Gilman: Aluminum-Based Metal Matrix Composites from Mechanically Alloyed Powder, Allied-Signal, Inc., NJ, 1990, application no. WO 4946500.

    Google Scholar 

  27. C. Goujon, P. Goeuriot, M. Chedru, J. Vicens, J.L. Chermant, F. Bernard, J.C. Niepce, P. Verdier, and Y. Larrent: Powder Technol., 1999, vol. 105, pp. 328–36.

    Article  CAS  Google Scholar 

  28. J. He and J.M. Schoenung: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 673–83.

    CAS  Google Scholar 

  29. F. Zhou, J. Lee, S. Dallek, E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 3451–58.

    CAS  Google Scholar 

  30. D.G. Morris: Mechanical Behaviour of Nanostructured Materials, Trans Tech Publications, Uetikon-Zuerich, Switzerland, 1998.

    Google Scholar 

  31. J. Ye and J.M. Schoenung: Adv. Eng. Mater., 2004, vol. 6, pp. 656–64.

    Article  CAS  Google Scholar 

  32. Y.F. Zhang, L. Lü, and S.M. Yap: J. Mater. Proc. Technol., 1999, vols. 89–90, pp. 260–65.

    Article  Google Scholar 

  33. J. Ye, B.Q. Han, F. Tang, and J.M. Schoenung: Mater. Res. Soc. Symp. Proc., vol. 880E, pp. BB1.5.1, 2005.

  34. J. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, and J.M. Schoenung: Scripta Mater., 2005, vol. 53, pp. 481–86.

    Article  CAS  Google Scholar 

  35. J. He, J. Ye, E.J. Lavernia, D. Matejczyk, C. Bampton, and J.M. Schoenung: J. Mater. Sci., 2004, vol. 39, pp. 6957–64.

    Article  CAS  Google Scholar 

  36. H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, 1974, pp. 634–82.

    Google Scholar 

  37. L. Lü and M.O. Lai: Mechanical Alloying, Kluwer Academic Publishers, Boston, MA, 1998.

    Google Scholar 

  38. K.H. Chung, J. He, D.H. Shin, and J.M. Schoenung: Mater. Sci. Eng., A, 2003, vol. A356, pp. 23–31.

    CAS  Google Scholar 

  39. C.C. Koch: Nanostruct. Mater., 1997, vol. 9, pp. 13–22.

    Article  CAS  Google Scholar 

  40. K.H. Chung, J. Lee, R. Rodriguez, and E.J. Lavernia: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 125–34.

    Article  CAS  Google Scholar 

  41. R.F. Singer, W.C. Oliver, and W.D. Nix: Metall. Trans. A, 1980, vol. 11A, pp. 1895–901.

    CAS  Google Scholar 

  42. J. Ye, Z. Lee, B. Ahn, J. He, S.R. Nutt, and J.M. Schoenung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3111–17.

    CAS  Google Scholar 

  43. X.F. Su, H.R. Chen, D. Kennedy, and F.W. Williams: Composites, 1999, vol. 30A, pp. 257–66.

    CAS  Google Scholar 

  44. G.P. Upit, S.A. Varchenya, and Y.E. Manik: Automatic Welding Ussr., 1976, vol. 29, pp. 16–19.

    Google Scholar 

  45. V.V.B. Prasad, B.V.R. Bhat, Y.R. Mahajan, and P. Ramakrishnan: Mater. Sci. Eng., A, 2002, vol. A337, pp. 179–86.

    CAS  Google Scholar 

  46. H. Zhang, N. Maljkovic, and B.S. Mitchell: Mater. Sci. Eng., A, 2002, vol. A326, pp. 317–23.

    CAS  Google Scholar 

  47. S.L. Urtiga Filho, R. Rodriguez, J.C. Earthman, and E.J. Lavernia: Mater. Sci. Forum, (Advanced Powder Technology III), 2003, vols. 416–418, pp. 213–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., He, J. & Schoenung, J.M. Cryomilling for the fabrication of a particulate B4C reinforced Al nanocomposite: Part I. Effects of process conditions on structure. Metall Mater Trans A 37, 3099–3109 (2006). https://doi.org/10.1007/s11661-006-0190-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0190-z

Keywords

Navigation