Skip to main content

Advertisement

Log in

Effect of Zr or Ga Addition and Annealing on Microstructural Evolution, Deformation and Fracture Behaviour of Nb-19Si-5Mo-20Ti Based Hypereutectic Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Zr or Ga additions (3 at.pct each) on the evolution of microstructure and mechanical properties of the Nb-19Si-5Mo-20Ti (base) alloy in as cast or annealed (1500 °C/100 hours) condition has been examined. The as cast microstructures of both Zr and Ga containing alloys have exhibited (β + α)-5-3 silicide phase as primary dendritic phase or as eutectic constituent besides niobium-rich solid solution (Nbss). Zr-rich γ-5-3 silicide is found in the eutectic with mixed lamellar or non-lamellar morphology in the Zr containing alloy, whereas non-lamellar eutectic with β-Tiss at interfaces have been observed in the Ga added alloys. On annealing, the amount of eutectic surrounding the primary 5-3 silicide dendrites in as-cast microstructures increases along with increase in the size of Nbss, causing a noticeable decrease of hardness along with increase of dynamic Young’s modulus (E) to 187–190 GPa (= 163 and 179 GPa for as cast Zr and Ga containing alloys, respectively) due to β → α 5-3 silicide transformation and partitioning of Mo to Nbss. The post-anneal fracture toughness is increased on addition of Zr (~ 35.5 pct) and Ga (~ 18.2 pct) to ~ 14.9 ± 0.2 and ~ 13 ± 0.1 MPa√m, respectively, where toughening is facilitated by arrest, bridging or deflection of cracks by ductile Nbss phase. The room temperature compressive strengths (~ 2600 to 2900 MPa) of the as-cast alloys, having an inverse relationship with Nbss content, are reduced by ~ 13 pct with ~ 1.3 and ~ 1.5 times increase in ductility on annealing for Zr and Ga containing alloys, respectively. The compressive yield strength in the range of 900 °C to 1100 °C is increased more on alloying with Ga than Zr. However, the strength retention of both the alloys decreases with increasing temperature by thermally activated deformation of Nbss. Controlled alloying of hypereutectic Nb-Si-Mo-Ti with Zr or Ga along with annealing provides a strategy for simultaneous increase of both strength and fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.M. Dimiduk and J.H. Perepezko: MRS Bull., 2003, vol. 28, pp. 639–45.

    Article  CAS  Google Scholar 

  2. B.P. Bewlay, M.R. Jackson, J. Zhao, and P.R. Subramanian: Metall Mater. Trans., 2003, vol. 34A, pp. 2043–52.

    Article  CAS  Google Scholar 

  3. K.S. Chan: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 2315–28.

    Article  CAS  Google Scholar 

  4. Y. Li, X. Lin, Y. Hu, N. Kang, X. Gao, H. Dong, and W. Huang: J. Alloys Compd., 2019, vol. 783, pp. 66–76.

    Article  CAS  Google Scholar 

  5. C.L. Ma, Y. Tan, H. Tanaka, A. Kasama, R. Tanaka, S. Miura, Y. Mishima, and S. Hanada: Mater. Trans. JIM., 2000, vol. 41, pp. 1329–36.

    Article  CAS  Google Scholar 

  6. S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Intermetallics., 2011, vol. 19, pp. 1943–52.

    Article  CAS  Google Scholar 

  7. M. Sankar, G. Phanikumar, V. Singh, and V.V.S. Prasad: Intermetallics., 2018, vol. 101, pp. 123–32.

    Article  CAS  Google Scholar 

  8. Y.X. Tian, J.T. Guo, G.M. Cheng, L.Y. Sheng, L.Z. Zhou, L.L. He, and H.Q. Ye: Mater. Des., 2009, vol. 30, pp. 2274–77.

    Article  CAS  Google Scholar 

  9. W. Kim, H. Tanaka, A. Kasama, R. Tanaka, and S. Hanada: Intermetallics., 2001, vol. 9, pp. 521–27.

    Article  CAS  Google Scholar 

  10. E. Guo, S.S. Singh, C. Mayer, X. Meng, Y. Xu, L. Luo, M. Wang, and N. Chawla: J. Alloys Compd., 2017, vol. 704, pp. 89–100.

    Article  CAS  Google Scholar 

  11. W. Liu, H.P. Xiong, N. Li, S.Q. Guo, and R.Y. Qin: Acta Metall. Sin., 2018, vol. 31, pp. 362–70.

    Article  CAS  Google Scholar 

  12. B.P. Bewlay, M.R. Jackson, and M.F.X. Gigliotti: Intermet. Compd. Princ. Pract., 2002, vol. 4, pp. 541–60.

    Google Scholar 

  13. W. Li, H.B. Yang, A.D. Shan, and J.S. Wu: Mater. Sci. Forum., 2004, vol. 449–452, pp. 753–56.

    Article  Google Scholar 

  14. C.S. Tiwary, S. Kashyap, and K. Chattopadhyay: Mater. Sci. Technol., 2013, vol. 29, pp. 702–9.

    Article  CAS  Google Scholar 

  15. K.S. Chan: Mater. Sci. Eng. A., 2002, vol. 329–331, pp. 513–22.

    Article  Google Scholar 

  16. K. Sala and R. Mitra: Metall. Mater. Trans. A., 2021, vol. 52, pp. 3436–59.

    Article  CAS  Google Scholar 

  17. S. Miura, M. Aoki, Y. Saeki, K. Ohkubo, and Y. Mishima: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 489–96.

    Article  CAS  Google Scholar 

  18. Y. Qiao, X. Guo, and Y. Zeng: Intermetallics., 2017, vol. 88, pp. 19–27.

    Article  CAS  Google Scholar 

  19. Y.X. Tian, J.T. Guo, L.Y. Sheng, G.M. Cheng, L.Z. Zhou, L.L. He, and H.Q. Ye: Intermetallics., 2008, vol. 16, pp. 807–12.

    Article  CAS  Google Scholar 

  20. M. Sankar, G. Phanikumar, and V.V.S. Prasad: Mater. Sci. Eng. A., 2019, vol. 754, pp. 224–31.

    Article  CAS  Google Scholar 

  21. S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Mater. Sci. Eng. A., 2013, vol. 559, pp. 74–85.

    Article  CAS  Google Scholar 

  22. Y. Li, C. Ma, H. Zhang, and S. Miura: Mater. Sci. Eng. A., 2011, vol. 528, pp. 5772–77.

    Article  CAS  Google Scholar 

  23. K. Sala, S. Morankar, and R. Mitra: Metall. Mater. Trans. A., 2021, vol. 52, pp. 1185–211.

    Article  CAS  Google Scholar 

  24. K. Sala, S.K. Kashyap, and R. Mitra: Intermetallics., 2021, vol. 138, p. 107338.

    Article  CAS  Google Scholar 

  25. K. Chattopadhyay, R. Mitra, and K.K. Ray: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 577–92.

    Article  CAS  Google Scholar 

  26. K. Sala and R. Mitra: Mater. Sci. Eng. A., 2021, vol. 802, p. 140663.

    Article  CAS  Google Scholar 

  27. S. Roy, J. Gebert, G. Stasiuk, R. Piat, and K. André: Mater. Sci. Eng. A., 2011, vol. 528, pp. 8226–35.

    Article  CAS  Google Scholar 

  28. M.U. Cohen: Rev. Sci. Instrum., 1935, vol. 6, pp. 68–74.

    Article  Google Scholar 

  29. M.U. Cohen: Rev. Sci. Instrum., 1936, vol. 7, p. 155.

    Article  Google Scholar 

  30. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. Addison-Wesley, Wokingham, 1978.

    Google Scholar 

  31. L.M. Peng, Z. Li, H. Li, J.H. Wang, and M. Gong: J. Alloys Compd., 2006, vol. 414, pp. 100–6.

    Article  CAS  Google Scholar 

  32. L.M. Peng, Z. Li, and H. Li: J. Mater. Sci., 2006, vol. 41, pp. 7524–29.

    Article  CAS  Google Scholar 

  33. K. Zelenitsas and P. Tsakiropoulos: Intermetallics., 2005, vol. 13, pp. 1079–95.

    Article  CAS  Google Scholar 

  34. M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, and H.A. Lipsitt: JOM., 1996, vol. 48, pp. 39–44.

    Article  CAS  Google Scholar 

  35. B.P. Bewlay, M.R. Jackson, and P.R. Subramanian: JOM., 1999, vol. 51, pp. 32–6.

    Article  CAS  Google Scholar 

  36. S. Zhang and X. Guo: Intermetallics., 2016, vol. 70, pp. 33–44.

    Article  CAS  Google Scholar 

  37. M.E. Schlesinger, H. Okamoto, and A.B. Gokhale: R. Abbaschian., 1993, vol. 14, pp. 502–3.

    CAS  Google Scholar 

  38. W. Li, H. Yang, A. Shan, L. Zhang, and J. Wu: Intermetallics., 2006, vol. 14, pp. 392–95.

    Article  Google Scholar 

  39. F. Wang, L. Luo, X. Meng, Y. Xu, L. Wang, Y. Su, J. Guo, and H. Fu: J. Alloys Compd., 2018, vol. 741, pp. 51–8.

    Article  CAS  Google Scholar 

  40. S.H. Pitman: Development of NbSi2 base intermetallic alloys, PhD dissertation, University of Surrey, 1996.

  41. M. Bulanova and I. Fartushna: in Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Springer, 2010, pp. 505–22

  42. R. Abbaschian and M.D. Lipschutz: Mater. Sci. Eng. A., 1997, vol. 226–228, pp. 13–21.

    Article  Google Scholar 

  43. J. Nelson, M. Ghadyani, C. Utton, and P. Tsakiropoulos: Materials (Basel)., 2018, vol. 11, p. 1579.

    Article  Google Scholar 

  44. N. Sekido, Y. Kimura, S. Miura, and Y. Mishima: Mater. Trans., 2004, vol. 45, pp. 3264–71.

    Article  CAS  Google Scholar 

  45. J.C.J. Gigolotti, G.C. Coelho, C.A. Nunes, P.A. Suzuki, and J.M. Joubert: Intermetallics., 2017, vol. 82, pp. 76–92.

    Article  Google Scholar 

  46. S. Miura, K. Ohkubo, and T. Mohri: Mater. Res. Soc. Symp. Proc., 2005, vol. 842, pp. S5311–16.

    Google Scholar 

  47. J.L. Murray: Bull. Alloy Phase Diagrams., 1981, vol. 2, pp. 197–200.

    Article  Google Scholar 

  48. K.C.H. Kumar, P. Wollants, and L. Delaey: J. Alloys. Compd., 1994, vol. 206, pp. 121–27.

    Article  CAS  Google Scholar 

  49. J.L. Murray: Bull. Alloy Phase Diagrams., 1985, vol. 6, pp. 327–30.

    Article  CAS  Google Scholar 

  50. M. Hansen, E.L. Kamen, H.D. Kessler, and D.J. McPherson: JOM., 1951, vol. 3, pp. 881–88.

    Article  CAS  Google Scholar 

  51. N.V. Antonova and L.A. Tretyachenko: J. Alloys Compd., 2001, vol. 318, pp. 398–405.

    Article  Google Scholar 

  52. X.J. Han and B. Wei: Metall. Mater. Trans. A., 2002, vol. 33, pp. 1221–8.

    Article  Google Scholar 

  53. M. Li and K. Kuribayashi: Metall. Mater. Trans. A., 2003, vol. 34, pp. 2999–3008.

    Article  Google Scholar 

  54. K. Chattopadhyay, R. Sinha, R. Mitra, and K.K. Ray: Mater. Sci. Eng. A., 2007, vol. 456, pp. 358–63.

    Article  Google Scholar 

  55. B.P. Bewlay and M.R. Jackson: J. Phase Equilib., 1998, vol. 19, pp. 577–86.

    Article  CAS  Google Scholar 

  56. S. Zhang and X. Guo: Mater. Sci. Eng. A., 2015, vol. 638, pp. 121–31.

    Article  CAS  Google Scholar 

  57. Y. Sainan, J. Lina, S. Linfen, M. Limin, and Z. Hu: Intermetallics., 2013, vol. 38, pp. 102–6.

    Article  Google Scholar 

  58. J.C. Slater: J. Chem. Phys., 1964, vol. 41, pp. 3199–204.

    Article  CAS  Google Scholar 

  59. G. Shao and P. Tsakiropoulos: Mater. Sci. Eng. A., 1999, vol. 271, pp. 286–90.

    Article  Google Scholar 

  60. S. Diplas, G. Shao, S.A. Morton, P. Tsakiropoulos, and J.F. Watts: Intermetallics., 1999, vol. 7, pp. 937–46.

    Article  CAS  Google Scholar 

  61. P. Maji, R. Mitra, and K.K. Ray: Intermetallics., 2017, vol. 85, pp. 34–47.

    Article  CAS  Google Scholar 

  62. Y. Chen, J.X. Shang, and Y. Zhang: Phys. Rev. B., 2007, vol. 76, pp. 1–8.

    Google Scholar 

  63. I. Papadimitriou, C. Utton, A. Scott, and P. Tsakiropoulos: Intermetallics., 2014, vol. 54, pp. 125–32.

    Article  CAS  Google Scholar 

  64. Y. Chen, T. Hammerschmidt, D.G. Pettifor, J.X. Shang, and Y. Zhang: Acta Mater., 2009, vol. 57, pp. 2657–64.

    Article  CAS  Google Scholar 

  65. S. Shi, L. Zhu, L. Jia, H. Zhang, and Z. Sun: Comput. Mater. Sci., 2015, vol. 108, pp. 121–27.

    Article  CAS  Google Scholar 

  66. J. Kim, T. Tabaru, H. Hirai, A. Kitahara, and S. Hanada: Mater. Trans., 2002, vol. 43, pp. 2201–204.

    Article  CAS  Google Scholar 

  67. C.H. Shang, D. Van Heerden, A.J. Gavens, and T.P. Weihs: Acta Mater., 2000, vol. 48, pp. 3533–43.

    Article  CAS  Google Scholar 

  68. W. Xu, J. Han, C. Wang, Y. Zhou, Y. Wang, Y. Kang, B. Wen, X. Liu, and Z.K. Liu: Intermetallics., 2014, vol. 46, pp. 72–79.

    Article  CAS  Google Scholar 

  69. K. Chattopadhyay, G. Balachandran, R. Mitra, and K.K. Ray: Intermetallics., 2006, vol. 14, pp. 1452–60.

    Article  CAS  Google Scholar 

  70. M.E. Fine, L.D. Brown, and H.L. Marcus: Scr. Metall., 1984, vol. 18, pp. 951–56.

    Article  CAS  Google Scholar 

  71. C. Smithells: Metal References, 5th ed. Butterworth, London, 1976.

    Google Scholar 

  72. P. Tsakiropoulos: Materials (Basel)., 2018, vol. 11, p. 69.

    Article  Google Scholar 

  73. K.T. Faber and A.G. Evans: Acta Metall., 1983, vol. 31, pp. 565–76.

    Article  Google Scholar 

  74. R. Mitra: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 1629–41.

    Article  CAS  Google Scholar 

  75. A. Khan, H.M. Chan, M.P. Harmer, and R.F. Cook: J. Am. Ceram. Soc., 2000, vol. 40, pp. 833–40.

    Google Scholar 

  76. H. Guo and X. Guo: Scr. Mater., 2011, vol. 64, pp. 637–40.

    Article  CAS  Google Scholar 

  77. Y. Wang, S. Li, M. Wu, and Y. Han: Rare Met., 2011, vol. 30, pp. 326–30.

    Article  CAS  Google Scholar 

  78. F.F. Schmidt and H.R. Odgen: Defense Metals Information Center Battelle Memorial Institute Columbus 1, Ohio, 1963, pp. A-12–A-16.

  79. F.J. Anders and W. Pollock: Tensile Properties and Rolling Textures of Niobium Sheet. The Technology of Columbium (Niobium), Wiley, New York, 1958.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support received to carry out parts of the experimental work at the Department of Materials Engineering, Indian Institute of Science, Bangalore, the Central Research Facility, IIT Kharagpur and the Melting and Casting laboratory, Metallurgical and Materials Engineering, IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Sala.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of financial or personal interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sala, K., Mitra, R. Effect of Zr or Ga Addition and Annealing on Microstructural Evolution, Deformation and Fracture Behaviour of Nb-19Si-5Mo-20Ti Based Hypereutectic Alloy. Metall Mater Trans A 53, 1717–1737 (2022). https://doi.org/10.1007/s11661-022-06626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06626-0

Navigation