Skip to main content
Log in

Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results with the correct order of magnitude. Solidification modes in some eutectic alloys are predicted on the basis of the present criterion. Future work that may result in some probable errors is briefly directed to improve the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schleip, R. Willnecker, D.M. Herlach, and G.P. Goerler: Mater. Sci. Eng., 1988, vol. 98, pp. 39–42.

    Article  CAS  Google Scholar 

  2. M. Barth, K. Eckler, D.M. Herlach, and H. Alexander: Mater. Sci. Eng. A, 1991, vol. A133, pp. 790–94.

    CAS  Google Scholar 

  3. R. Willnecker, D.M. Herlach, and B. Feuerbacher: Phys. Rev. Lett., 1989, vol. 62, pp. 2707–10.

    Article  CAS  Google Scholar 

  4. J. Lipton, W. Kurz, and R. Trivedi: Acta Metall., 1987, vol. 35, pp. 957–64, pp. 965-70.

    Article  CAS  Google Scholar 

  5. W.J. Boettinger, S.R. Coriell, and R. Trivedi: in Rapid Solidification Processing: Principles and Technologies IV, R. Mehrabian, and P.A. Parrish, eds., Claitor’s, Baton Rouge, LA, 1988, pp. 13–25.

    Google Scholar 

  6. G.J. Abbaschian and M.C. Flemings: Metall. Trans. A, 1983, vol. 14A, pp. 1147–57.

    Google Scholar 

  7. F. Gaertner, A.F. Norman, A.L. Greer, A. Zambon, A. Ramous, K. Eckler, and D.M. Herlach: Acta Mater., 1997, vol. 45, pp. 51–66.

    Article  CAS  Google Scholar 

  8. J.F. Li, Y.C. Liu, Y.L. Lu, G.C. Yang, and Y.H. Zhou: J. Cryst. Growth, 1998, vol. 192, pp. 462–70.

    Article  CAS  Google Scholar 

  9. R. Goetzinger, M. Barth, and D.M. Herlach: J. Appl. Phys., 1998, vol. 84, pp. 1643–49.

    Article  CAS  Google Scholar 

  10. B. Wei, D.M. Herlach, and F. Sommer: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1774–77.

    Article  CAS  Google Scholar 

  11. W. Loeser, R. Hermann, M. Leonhardt, D. Stephan, and R. Bormann: Mater. Sci. Eng. A, 1997, vol. A224, pp. 53–60.

    Article  Google Scholar 

  12. M. Leonhardt, W. Loeser, and H-G. Lindenkreuz: Acta Mater., 1999, vol. 47, pp. 2961–68.

    Article  CAS  Google Scholar 

  13. B. Wei, G. Yang, and Y. Zhou: Acta Metall. Mater., 1991, vol. 39, pp. 1249–58.

    Article  CAS  Google Scholar 

  14. B. Wei, D.M. Herlach, F. Sommer, and W. Kurz: Mater. Sci. Eng. A, 1993, vol. A173, pp. 355–59.

    CAS  Google Scholar 

  15. B. Wei, D.M. Herlach, F. Sommer, and W. Kurz: Mater. Sci. Eng. A, 1994, vol. A81/A182, pp. 1150–55.

    Google Scholar 

  16. T.Z. Kattamis and M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 1449–51.

    CAS  Google Scholar 

  17. B.L. Jones: Metall. Trans., 1971, vol. 2, pp. 2950–51.

    CAS  Google Scholar 

  18. B. Wei, D.M. Herlach, B. Feuerbacher, and F. Sommer: Acta Metall. Mater., 1993, vol. 41, pp. 1801–09.

    Article  CAS  Google Scholar 

  19. R. Goetzinger, M. Barth, and D.M. Herlach: Acta Mater., 1998, vol. 46, pp. 1647–55.

    Article  CAS  Google Scholar 

  20. N. Wang and B. Wei: Mater. Sci. Eng. A, 2001, vol. A307, pp. 80–90.

    CAS  Google Scholar 

  21. X.J. Han and B. Wei: Metall. Mater. Trans. A, 2002, vol. A33, pp. 1221–28.

    Google Scholar 

  22. C.D. Cao, W.J. Xie, and B. Wei: Mater. Sci. Eng. A, 2000, vol. A283, pp. 86–93.

    CAS  Google Scholar 

  23. X.R. Liu, C.D. Cao, and B. Wei: Scripta Mater., 2002, vol. 46, pp. 13–18.

    Article  CAS  Google Scholar 

  24. M. Li, K. Nagashio, and K. Kuribayashi: Acta Mater., 2002, vol. 50, pp. 3239–50.

    CAS  Google Scholar 

  25. L.Q. Xing, D.Q. Zhao, and X.C. Chen: J. Mater. Sci., 1993, vol. 28, pp. 2733–37.

    Article  CAS  Google Scholar 

  26. S. Walder and P.L. Ryder: J. Appl. Phys., 1993, vol. 73, pp. 1965–70.

    Article  CAS  Google Scholar 

  27. B. Wei and D.M. Herlach: Mater. Sci. Eng. A, 1997, vol. A226–228, pp. 799–803.

    Google Scholar 

  28. S. Walder and P.L. Ryder: J. Appl. Phys., 1993, vol. 74, pp. 6100–06.

    Article  CAS  Google Scholar 

  29. S. Walder and P.L. Ryder: Acta Metall. Mater., 1995, vol. 43, pp. 4007–13.

    Article  CAS  Google Scholar 

  30. M. Suzuki, T.J. Piccone, M.C. Flemings, and H.D. Brody: Metall. Trans. A, 1991, vol. 22A, pp. 2761–68.

    CAS  Google Scholar 

  31. K. Eckler, A.F. Norman, F. Gaertner, A.L. Greer, and D.M. Herlach: J. Cryst. Growth, 1997, vol. 173, pp. 528–40.

    Article  CAS  Google Scholar 

  32. M. Li, K. Nagashio, and K. Kuribayashi: Phil. Mag., 2003, vol. 83, pp. 1095–1109.

    Article  CAS  Google Scholar 

  33. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129–42.

    CAS  Google Scholar 

  34. R. Trivedi, P. Magnin, and W. Kurz: Acta Metall., 1987, vol. 35, pp. 971–80.

    Article  CAS  Google Scholar 

  35. W. Kurz and R. Trivedi: Metall. Trans. A, 1991, vol. 22A, pp. 3051–57.

    CAS  Google Scholar 

  36. J.D. Hunt and K.A. Jackson: Trans. TMS-AIME, 1966, vol. 236, pp. 843–52.

    CAS  Google Scholar 

  37. D.J. Fisher and W. Kurz: Acta Metall., 1980, vol. 28, pp. 777–94.

    Article  CAS  Google Scholar 

  38. R. Abbaschian and M.D. Lipschutz: Mater. Sci. Eng. A, 1997, vols. A226–A228, pp. 13–21.

    Google Scholar 

  39. M.J. Aziz: Metall. Mater. Trans. A, 1996, vol. A27, pp. 671–86.

    Google Scholar 

  40. S.R. Coriell and D. Turnbull: Acta Metall., 1982, vol. 30, pp. 2135–39.

    Article  CAS  Google Scholar 

  41. T. Suzuki, S. Toyada, T. Umeda, and Y. Kimura: J. Cryst. Growth, 1977, vol. 38, pp. 123–28.

    Article  CAS  Google Scholar 

  42. R. Willnecker, D.M. Herlach, and B. Feuerbacher: Phy. Rev. Lett., 1989, vol. 62, pp. 2707–10.

    Article  CAS  Google Scholar 

  43. Q. Zhao, T.J. Piccone, Y. Shiohara, and M.C. Flemings in Rapid Quenching and Powder Preparation, Proc. MRS Int. Meetings on Advanced Materials, Tokyo, Japan, 1989, vol. 3, pp. 597–602.

  44. T. Aoyama and K. Kuribayashi: Acta Mater., 2003, vol. 51, pp. 2297–2303.

    Article  CAS  Google Scholar 

  45. R.P. Liu, T. Volkmann, and D.M. Herlach: Acta Mater., 2001, vol. 49, pp. 439–44.

    Article  CAS  Google Scholar 

  46. D. Li and D.M. Herlach: Phys. Rev. Lett., 1996, vol. 77, pp. 1801–04.

    Article  CAS  Google Scholar 

  47. M.E. Glicksman and R.J. Schaefer: J. Cryst. Growth, 1967, vol. 1, pp. 297–310.

    Article  CAS  Google Scholar 

  48. M.E. Glicksman and R.J. Schaefer: J. Cryst. Growth, 1968, vol. 2, pp. 239–42.

    Article  CAS  Google Scholar 

  49. R. Trivedi and W. Kurz: Acta Metall., 1986, vol. 34, pp. 1663–70.

    Article  CAS  Google Scholar 

  50. S.C. Gill and W. Kurz: Acta Metall. Mater., 1995, vol. 43, 139–51.

    CAS  Google Scholar 

  51. D.M. Herlach: Mater. Sci. Eng. A, 1994, vol. A179–180, pp. 147–52.

    Google Scholar 

  52. J. Schroers, D. Holland-Moritz, D.M. Herlach, and K. Urban: Phys. Rev. B, 2000, vol. 61, pp. 14500–06.

    Article  CAS  Google Scholar 

  53. K. Nagashio and K. Kuribayashi: Acta Mater., 2002, vol. 50, pp. 1973–81.

    Article  CAS  Google Scholar 

  54. K. Nagashio, K. Kuribayashi, and Y. Takamura: Acta Mater., 2000, vol. 48, pp. 3049–57.

    Article  CAS  Google Scholar 

  55. K. Nagashio and K. Kuribayashi: Acta Mater., 2001, vol. 49, pp. 1947–55.

    Article  CAS  Google Scholar 

  56. K.A. Jackson: Can. J. Phys., 1958, vol. 36, pp. 683–91.

    CAS  Google Scholar 

  57. H. Jones and W. Kurz: Z. Metallkd., 1981, vol. 72, pp. 792–97.

    CAS  Google Scholar 

  58. M.B. Robinson, D. Li, J.R. Rogers, R.W. Hyers, L. Savage, and T.J. Rathz: Appl. Phys. Lett., 2000, vol. 77, pp. 3266–68.

    Article  CAS  Google Scholar 

  59. M. Li, K. Nagashio, and K. Kuribayashi: J. Cryst. Growth, 2003, vol. 249, pp. 625–33.

    Article  CAS  Google Scholar 

  60. K. Ishida and T. Nishizawa: in Binary Alloy Phase Diagrams, 2nd ed. Thaddeus B. Massalski, ed., The Materials Information Society, ASM INTERNATIONAL, Materials Park, OH, 1996, vol. 2, p. 1235.

    Google Scholar 

  61. W.J. Yao, N. Wang, and B. Wei: Mater. Sci. Eng. A, 2003, vol. 344A, pp. 10–19.

    Google Scholar 

  62. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications Ltd., Aedermannsdorf, Switzerland, 1998, p. 142.

    Google Scholar 

  63. R. Trivedi, F. Jin, and I.E. Anderson: Acta Mater., 2003, vol. 51, pp. 289–300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Kuribayashi, K. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts. Metall Mater Trans A 34, 2999–3008 (2003). https://doi.org/10.1007/s11661-003-0199-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0199-5

Keywords

Navigation