Skip to main content

Advertisement

Log in

Effect of Ti or Fe Addition and Annealing on Microstructural Evolution and Mechanical Properties of Hypereutectic Nb-Si-Mo Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural evolution, elastic properties, hardness, and indentation fracture toughness of arc-melted hypereutectic ternary Nb-19Si-5Mo (NSM) have been compared with Nb-19Si-5Mo-20Ti (NSM-20Ti) and Nb-19Si-5Mo-4Fe (NSM-4Fe) alloys in the as-cast or annealed conditions (1500 °C for 60 or 100 h) to examine the effect of quaternary alloying with Ti and Fe. Characterization of microstructure has revealed the presence of primary β or α-5-3-silicide ((Nb,X)5Si3, X=Ti,Fe) along with eutectic comprising Nbss+(β or α)-5-3-silicide, and additionally β-Tiss in NSM-20Ti and Nb4FeSi in NSM-4Fe. The lamellar eutectic in the as-cast NSM is replaced by non-lamellar morphology partially on Fe addition, and completely on Ti addition, suggesting decoupled growth during solidification. Annealing has not only altered the phase volume fractions, but also changed the eutectic morphology from lamellar to non-lamellar by spheroidization and coarsening of constituents. The dynamic Young’s modulus of NSM (163 ± 2 GPa) is increased to 176 ± 4 GPa and 222 ± 4 GPa on Ti and Fe additions, respectively, and these values have increased by 9-21 pct on annealing due to βα transformation of 5-3 silicides, altered phase volume fractions, and partitioning of alloying elements. The microhardness of primary 5-3-silicide found as greater than that of eutectic is lowered on annealing of NSM and NSM-20Ti, but is increased in the annealed NSM-4Fe due to solute partitioning. The hardness is lowered with Ti or Fe addition, or on annealing of NSM and NSM-20Ti, but is higher in annealed NSM-4Fe due to altered microstructure and solute concentrations. The indentation fracture toughness of NSM (~9.2 MPa.m1/2) is increased by >2 times in annealed NSM-20Ti to ~18.8 MPa.m1/2 through ductile-phase toughening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1 S. Zhiping, G. Jinming, Z. Chen, G. Xiping, and T. Xiaodong: Rare Metal Materials and Engineering, 2016, vol. 45, pp. 1678–82.

    Article  Google Scholar 

  2. 2 Y. Li, W. Zhu, Q. Li, S. Qiu, and J. Zhang: Journal of Alloys and Compounds, 2017, vol. 704, pp. 311–21.

    Article  CAS  Google Scholar 

  3. 3 B.P. Bewlay, M.R. Jackson, J.. Zhao, and P.R. Subramanian: Metallurgical and Materials Transactions, 2003, vol. 34A, pp. 2043–52.

    Article  CAS  Google Scholar 

  4. 4 M.E. Schlesinger, H. Okamoto, A.B. Gokhale, and R. Abbaschian: Journal of Phase Equilibria, 1993, vol. 14, pp. 502–3.

    Article  CAS  Google Scholar 

  5. 5 B.P. Bewlay, M.R. Jackson, and M.F.X. Gigliotti: Intermetallic Compounds - Principles and Practice, 2002, vol. 3, pp. 541–60.

    CAS  Google Scholar 

  6. 6 Z. Li and L.M. Peng: Acta Materialia, 2007, vol. 55, pp. 6573–85.

    Article  CAS  Google Scholar 

  7. 7 C.S. Tiwary, S. Kashyap, and K. Chattopadhyay: Materials Science and Engineering A, 2013, vol. 560, pp. 200–7.

    Article  CAS  Google Scholar 

  8. 8 C.S. Tiwary, S. Kashyap, and K. Chattopadhyay: Materials Science and Technology, 2013, vol. 29, pp. 702–9.

    Article  CAS  Google Scholar 

  9. 9 K.S. Chan: Metallurgical and Materials Transactions A, 1994, vol. 25, pp. 299–308.

    Article  CAS  Google Scholar 

  10. 10 S. Zhang, W. Liu, and J. Sha: Progress in Natural Science: Materials International, 2018, vol. 28, pp. 626–34.

    Article  CAS  Google Scholar 

  11. R. Mitra, K. Chattopadhyay, A.K. Srivastava, K.K. Ray, and N. Eswara Prasad: Key Engineering Materials, 2009, vol. 395, pp. 179–92.

  12. R. Mitra, A.K. Srivastava, N. Eswara Prasad, and S. Kumari: Intermetallics, 2006, vol. 14, pp. 1461–71.

  13. 13 R. Mitra: International Materials Reviews, 2006, vol. 51, pp. 13–64.

    Article  CAS  Google Scholar 

  14. 14 W. Kim, H. Tanaka, and S. Hanada: Intermetallics, 2002, vol. 10, pp. 625–34.

    Article  CAS  Google Scholar 

  15. 15 K. Chattopadhyay, G. Balachandran, R. Mitra, and K.K. Ray: Intermetallics, 2006, vol. 14, pp. 1452–60.

    Article  CAS  Google Scholar 

  16. 16 S. Zhang and X. Guo: Materials Science and Engineering A, 2015, vol. 638, pp. 121–31.

    Article  CAS  Google Scholar 

  17. 17 M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk: Metallurgical Transactions A, 1991, vol. 22, pp. 1573–83.

    Article  Google Scholar 

  18. 18 K. Chattopadhyay, R. Sinha, R. Mitra, and K.K. Ray: Materials Science and Engineering A, 2007, vol. 456, pp. 358–63.

    Article  Google Scholar 

  19. 19 Z. Li and P. Tsakiropoulos: Journal of Alloys and Compounds, 2013, vol. 550, pp 553-60.

    Google Scholar 

  20. 20 S.M. Zhang, J.R. Zhou, and J.B. Sha: Intermetallics, 2015, vol. 57, pp. 146–55.

    Article  CAS  Google Scholar 

  21. 21 P. Tsakiropoulos: Intermetallics, 2014, vol. 55, pp. 95–101.

    Article  CAS  Google Scholar 

  22. 22 F. Wang, L. Luo, Y. Xu, X. Meng, L. Wang, B. Han, Y. Su, J. Guo, and H. Fu: Intermetallics, 2017, vol. 88, pp. 6–13.

    Article  CAS  Google Scholar 

  23. 23 N. Vellios and P. Tsakiropoulos: Intermetallics, 2007, vol. 15, pp. 1529–37.

    Article  CAS  Google Scholar 

  24. M.R. Jackson, B.P. Bewlay, J.C. Zhao. American Patent: 0066578: 2003.

  25. 25 W.Y. Kim, H. Tanaka, A. Kasama, R. Tanaka, and S. Hanada: Intermetallics, 2001, vol. 9, pp. 521–7.

    Article  CAS  Google Scholar 

  26. 26 Y. Qiao, X. Guo, and Y. Zeng: Intermetallics, 2017, vol. 88, pp. 19–27.

    Article  CAS  Google Scholar 

  27. C.L.Ma, Y.Tan, H.Tanaka, R.T. A.Kasama, S.Miura, Y.Mishima, and S.Hanada: Mater. Trans. JIM, 2000, 41, vol. 41.

  28. 28 F. Wang, L. Luo, X. Meng, Y. Xu, L. Wang, Y. Su, J. Guo, and H. Fu: Journal of Alloys and Compounds, 2018, vol. 741, pp. 51–8.

    Article  CAS  Google Scholar 

  29. J.C. Jânio Gigolotti, G.C. Coelho, C.A. Nunes, P.A. Suzuki, and J.M. Joubert: Intermetallics, 2017, vol. 82, pp. 76–92.

  30. G. Raghavan, V., & Ghosh: Trans. Indian Inst. Met., 1984, vol. 37, pp. 421-5b.

  31. 31 P. Maji, R. Mitra, and K.K. Ray: Intermetallics, 2017, vol. 85, pp. 34–47.

    Article  CAS  Google Scholar 

  32. 32 Z. Li and P. Tsakiropoulos: Materials, 2019, vol. 12, pp. 3120.

    Article  CAS  Google Scholar 

  33. 33 J.R. Zhou and J.B. Sha: Intermetallics, 2013, vol. 34, pp. 1–9.

    Article  Google Scholar 

  34. 34 I. Papadimitriou, C. Utton, and P. Tsakiropoulos: Science and Technology of Advanced Materials, 2017, vol. 18, pp. 467–79.

    Article  CAS  Google Scholar 

  35. 35 B.P. Bewlay, J.J. Lewandowksi, and M.R. Jackson: JOM, 1997, vol. 49, pp. 44–5.

    Article  CAS  Google Scholar 

  36. H.A.Lipsitt. B.P. Bewlay, M.R. Jackson: J. Phase Equilib. 1998, vol. 19, pp. 577–86.

  37. 37 S. Roy, J. Gebert, G. Stasiuk, R. Piat, and K. André: Materials Science and Engineering A, 2011, vol. 528, pp. 8226–35.

    Article  CAS  Google Scholar 

  38. 38 R. Mitra: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, vol. 29, pp. 1629–41.

    Article  CAS  Google Scholar 

  39. 39 S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Intermetallics, 2011, vol. 19, pp. 1943–52.

    Article  CAS  Google Scholar 

  40. 40 S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Materials Science and Engineering A, 2013, vol. 559, pp. 74–85.

    Article  CAS  Google Scholar 

  41. 41 B. R. Lawn and T. R. Wilshaw: Journal of Materials Science, 1975, vol. 10, pp. 1049–81.

    Article  Google Scholar 

  42. M.A.Meyers, and K.K. Chawla: Mechanical Behavior of Materials, Second., Prentice Hall, New Jersey, USA, 1999.

  43. I.L. Ekbarg, R. Lundberg, R. Warren, and R. Carlsson: In Brittle Matrix Composites 2, Eds., Elsevier Applied Science, London, 1989.

  44. 44 R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Third., John Wiley and sons, New York, 1989.

    Google Scholar 

  45. E.I. Gladyshevskii and Y.B. Kuz’ma: J. Struct. Chem., 1965, vol. 6, pp. 60–3.

  46. 46 K. Zelenitsas and P. Tsakiropoulos: Intermetallics, 2005, vol. 13, pp. 1079–95.

    Article  CAS  Google Scholar 

  47. 47 M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, and H.A. Lipsitt: JOM, 1996, vol. 48, pp. 39–44.

    Article  CAS  Google Scholar 

  48. 48 B.P. Bewlay, M.R. Jackson, and P.R. Subramanian: JOM, 1999, vol. 51, pp. 32–6.

    Article  CAS  Google Scholar 

  49. 49 S. Zhang and X. Guo: Intermetallics, 2016, vol. 70, pp. 33–44.

    Article  CAS  Google Scholar 

  50. 50 W. Li, H. Yang, A. Shan, L. Zhang, and J. Wu: Intermetallics, 2006, vol. 14, pp. 392–5.

    Article  Google Scholar 

  51. 51 R. Abbaschian and M.D. Lipschutz: Materials Science and Engineering A, 1997, vol. 226–228, pp. 13–21.

    Article  Google Scholar 

  52. 52 M. Bulanova and I. Fartushna: Refractory Metal Systems, 1st Edn, Springer-Verlag Berlin Heidelberg, 2010, pp. 505-22.

    Book  Google Scholar 

  53. 53 J. Bao, Q. Huang, L. Tang, T. Geng, X. Zhao, and C. Ma: Chinese Journal of Aeronautics, 2008, vol. 21, pp. 275–80.

    Article  Google Scholar 

  54. 54 J. Nelson, M. Ghadyani, C. Utton, and P. Tsakiropoulos: Materials, 2018, vol. 11, pp. 1579.

    Article  Google Scholar 

  55. 55 N. Sekido, Y. Kimura, S. Miura, and Y. Mishima: Materials Transactions, 2004, vol. 45, pp. 3264–71.

    Article  CAS  Google Scholar 

  56. 56 M. Hansen, E.L. Kamen, H.D. Kessler, and D.J. McPherson: JOM, 1951, vol. 3, pp. 881–8.

    Article  CAS  Google Scholar 

  57. 57 I. Grammenos and P. Tsakiropoulos: Intermetallics, 2010, vol. 18, pp. 242–53.

    Article  CAS  Google Scholar 

  58. 58 J. Geng, P. Tsakiropoulos, and G. Shao: Intermetallics, 2006, vol. 14, pp. 227–35.

    Article  CAS  Google Scholar 

  59. 59 T. Thandorn and P. Tsakiropoulos: Intermetallics, 2010, vol. 18, pp. 1033–8.

    Article  CAS  Google Scholar 

  60. 60 S. Qu, Y. Han, and L. Song: Intermetallics, 2007, vol. 15, pp. 810–3.

    Article  CAS  Google Scholar 

  61. Goldschmidt H.J.: Journal of the Iron and Steel Institute, 1960, p. 1690180.

  62. 62 N. Vellios and P. Tsakiropoulos: Intermetallics, 2010, vol. 18, pp. 1729–36.

    Article  CAS  Google Scholar 

  63. S.H. Pitman: Development of NbSi2 base intermetallic alloys, PhD dissertation, University of Surrey, UK, 1996.

  64. 64 M. Li and K. Kuribayashi: Metallurgical and materials transactions A, 2003, vol. 34, pp. 2999–3008.

    Article  CAS  Google Scholar 

  65. 65 H. Guo and X. Guo: Scripta Materialia, 2011, vol. 64, pp. 637–40.

    Article  CAS  Google Scholar 

  66. 66 Y. Sainan, J. Lina, S. Linfen, M. Limin, and Z. Hu: Intermetallics, 2013, vol. 38, pp. 102–6.

    Article  Google Scholar 

  67. 67 Y. Chen, J.X. Shang, and Y. Zhang: Physical Review B - Condensed Matter and Materials Physics, 2007, vol. 76, pp. 1–8.

    Google Scholar 

  68. 68 T.B. Massalski: Binary Alloy Phase Diagrams, Materials Park, Ohio: ASM, 1992.

    Google Scholar 

  69. D. J. Miller, J. W. Sears and H. L, Fraser: Acta Metall. 1989, vol. 37, pp. 999–1007.

  70. 70 R. J. Grylls, B. P. Bewlay, H. A. Lipsitt, and H. L. Fraser: Philosophical Magazine A, 2001, Vol. 81(8), 1967-1978.

    Article  CAS  Google Scholar 

  71. 71 X. Ma, X. Guo, and M. Fu: Intermetallics, 2018, vol. 98, pp. 11–7.

    Article  CAS  Google Scholar 

  72. 72 J.C. Slater: The Journal of Chemical Physics, 1964, vol. 41, pp. 3199–204.

    Article  CAS  Google Scholar 

  73. 73 G. Shao and P. Tsakiropoulos: Materials Science and Engineering A, 1999, vol. 271, pp. 286–90.

    Article  Google Scholar 

  74. 74 S. Diplas, G. Shao, S.A. Morton, P. Tsakiropoulos, and J.F. Watts: Intermetallics, 1999, vol. 7, pp. 937–46.

    Article  CAS  Google Scholar 

  75. 75 I. Papadimitriou, C. Utton, A. Scott, and P. Tsakiropoulos: Intermetallics, 2014, vol. 54, pp. 125–32.

    Article  CAS  Google Scholar 

  76. 76 Y. Chen, T. Hammerschmidt, D.G. Pettifor, J.X. Shang, and Y. Zhang: Acta Materialia, 2009, vol. 57, pp. 2657–64.

    Article  CAS  Google Scholar 

  77. 77 S. Shi, L. Zhu, L. Jia, H. Zhang, and Z. Sun: Computational Materials Science, 2015, vol. 108, pp. 121–7.

    Article  CAS  Google Scholar 

  78. 78 J. Kim, T. Tabaru, H. Hirai, A. Kitahara, and S. Hanada: Materials Transactions, 2002, vol. 43, pp. 2201–4.

    Article  CAS  Google Scholar 

  79. C.H. Shang, D. Van Heerden, a. J. Gavens, and T.P. Weihs: Acta Materialia, 2000, vol. 48, pp. 3533–43.

  80. 80 W. Xu, J. Han, C. Wang, Y. Zhou, Y. Wang, Y. Kang, B. Wen, X. Liu, and Z.K. Liu: Intermetallics, 2014, vol. 46, pp. 72–9.

    Article  CAS  Google Scholar 

  81. 81 C. Smithells: Metal References, 5th edn., Butterworth, London, 1976.

    Google Scholar 

  82. 82 P. Tsakiropoulos: Materials, 2018, vol. 11, p. 69.

    Article  Google Scholar 

  83. 83 P. Tsakiropoulos: Materials, 2018, vol.11, pp. 395.

    Article  Google Scholar 

  84. 84 J.L. Yu, Z.K. Li, K.F. Zhang, X. Zheng, J.J. Zhang, R. Bai, and W.S. Wang: Materials Science and Engineering A, 2010, vol. 527, pp. 5230–3.

    Article  Google Scholar 

  85. 85 Z. Li and P. Tsakiropoulos: Materials, 2019, vol. 12, pp. 2655.

    Article  CAS  Google Scholar 

  86. 86 N. Vellios and P. Tsakiropoulos: Intermetallics, 2007, vol. 15, pp. 1518–28.

    Article  CAS  Google Scholar 

  87. 87 Z. Li and P. Tsakiropoulos: Intermetallics, 2012, vol. 26, pp. 18–25.

    Article  Google Scholar 

  88. 88 Z. Li and P. Tsakiropoulos: Intermetallics, 2011, vol. 19, pp. 1291–7.

    Article  CAS  Google Scholar 

  89. 89 George D. Quinn and Richard C. Bradt: Journal of american ceramic society, 2007, vol. 90, pp. 673–80.

    Article  CAS  Google Scholar 

  90. 90 G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: Journal of the American Ceramic Society, 1981, vol. 64, pp. 533–8.

    Article  CAS  Google Scholar 

  91. 91 J. Sha, C. Yang, and J. Liu: Scripta Materialia, 2010, vol. 62, pp. 859–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the Indian Institute of Science, Bangalore for conducting some of the experiments. Staff members of Central Research Facility, IIT Kharagpur are greatly acknowledged for help extended for characterization of the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasturi Sala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 5, 2020; accepted January 2, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sala, K., Morankar, S. & Mitra, R. Effect of Ti or Fe Addition and Annealing on Microstructural Evolution and Mechanical Properties of Hypereutectic Nb-Si-Mo Alloys. Metall Mater Trans A 52, 1185–1211 (2021). https://doi.org/10.1007/s11661-021-06155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06155-2

Navigation