Skip to main content
Log in

The Mechanism for Coarse Nb-Rich Particle Formation in Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fine and coarse Nb-containing particles (Nb(C,N) and NbC) can be found in steel alloyed with niobium. The fine Nb-containing particles (precipitates) are of the order of several nanometers, typically ≤ 50 nm, in diameter, while the coarse Nb-containing particles (coarse Nb-rich particles) can have lengths ranging from submicron to hundreds of microns. The mechanism for the formation of the fine niobium carbide or carbonitride precipitates is well established, and their beneficial effects on strength and toughness are well documented. On the other hand, coarse Nb-rich particles are detrimental to the performance of the steel. Despite the plethora of studies on coarse Nb-rich particles, no experimental evidence has been offered for the proposed mechanisms of their formation. In this paper, the results of detailed and comprehensive experimental work that provide a novel understanding of the mechanism of formation of coarse Nb-rich particles are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. F.W. Starratt: J. Met., 1958, p. 799.

  2. L. Meyer: Niobium Science and Technology, TMS, 2001, pp. 359-77.

  3. W.B. Morrison: Mater. Sci. and Tech., 2009, vol. 25, pp. 1066-73.

    Article  CAS  Google Scholar 

  4. H. Kajioka: How to Use Niobium for Improvement of Steel Properties, Edited by H. Takechi, CBMM Asia, 2010, pp. 1-27.

  5. J.M. Gray, D. Webster, and J.H. Woodhead: JISI, 1965, vol. 203, pp. 812-8.

    CAS  Google Scholar 

  6. A.J. DeArdo, J.M. Gray, and L. Meyer: Proc. of the Int. Symp. on Niobium, H. Stuart, ed., TMS, 1984, pp. 685-759.

  7. M.S. Dyer: “Study of Microalloy Precipitation in Hot Charged Slabs,” M.S. Thesis, 2010, Colorado School of Mines, Colorado, U.S.A.

  8. J.G. Speer, J.R. Michael, and S.S. Hansen: Metall. Trans. A, 1987, vol. 18A, pp. 211-21.

    Article  CAS  Google Scholar 

  9. A.J. DeArdo: Int. Mater. Rev., 2003, vol. 48, no. 6, pp. 371-402.

    Article  CAS  Google Scholar 

  10. J.L. Verger-Gaugry, G. Ocampo, and J.D. Embury: Metallography, vol. 18, 1985, pp. 381-93.

    Article  CAS  Google Scholar 

  11. G. Krapf, E.G. Buyok, W.R. Bandi, and L.M. Melnick: J. Iron and Steel Inst., 1973, pp. 353-56.

  12. E.T. Turkdogan: I&SM, 1989, pp. 61-75.

  13. S. Tao, F. Wang, G. Sun, Z. Yang, and C. Li: Metall. and Mater. Trans. A, 2015, vol. 46A, pp. 3670-6.

    Article  CAS  Google Scholar 

  14. S.G. Hong, K.B. Kang, and C.G. Park: Acta Mater., 2002, no. 46, pp. 163-8.

  15. S.H. Park, S. Yue, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 1641-51.

    Article  CAS  Google Scholar 

  16. S. Okaguchi and T. Hashimoto: ISIJ Int., 1992, vol 32, no. 3, pp. 283-90.

    Article  CAS  Google Scholar 

  17. M. Perez, M. Dumont, and D. Acevedo-Reyes: Acta Mater., 2008, no. 56, pp. 2119-32.

  18. B. Dutta, E.J. Palmiere, and C.M. Sellars: Acta Mater. Inc., Elsevier Sci. Ltd., 2001, no. 49, pp. 785-94.

  19. C. Zhou and R. Priestner: ISIJ Int., 1996, vol. 36, no. 11, pp. 1397-405.

    Article  CAS  Google Scholar 

  20. C. Klinkenberg, K. Hulka, and W. Bleck: Steel Res. Int., 2004, vol. 75, pp. 743-6.

    Article  Google Scholar 

  21. H.R. Wang and W. Wang: J. Mater. Sci., 2009, vol. 44, pp. 591-600.

    Article  CAS  Google Scholar 

  22. J. Jung, J. Park, J. Kim, and Y. Lee: Mater. Sci. and Eng. A, 2011, vol. 528, pp. 5529-35.

    Article  CAS  Google Scholar 

  23. P. Gong, E.J. Palmiere, and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392-403.

    Article  CAS  Google Scholar 

  24. R. Okamoto, A. Borgenstam, and J. Agren: Acta Mater. Inc., 2010, vol. 58, pp. 4783-90.

  25. E. Courtois, T. Epicier, and C. Scott: Micron, 2006, vol. 37, pp. 492-502.

    Article  CAS  Google Scholar 

  26. K. Taylor: Scripta Metall. et Mater., 1995, vol. 32, no. 1, pp. 7-12.

  27. N. Fujita and H.D.H. Bhadehia: Mater. Sci. and Tech., 2001, vol. 17, pp. 403-8.

    Article  CAS  Google Scholar 

  28. R. Phillips, W.E. Duckworth, F.E.L. Copley: J. Iron and Steel Inst., 1964, vol. 202, pp. 593-600.

    CAS  Google Scholar 

  29. R.P. DeVries: Proc. of Electric Furnace Conf., ISS, 1960, pp. 114-33.

  30. R. Brook: J. Iron and Steel Inst., 1965, vol. 203, p. 1040.

    Google Scholar 

  31. N.E. Hannerz, U. Lindborg, and B. Lehtinen: J. Iron and Steel Inst., 1968, vol. 206, pp. 68-73.

    CAS  Google Scholar 

  32. S. Kheirandish and A. Noorian: J. Iron and Steel Res. Int., 2008, vol. 15, no. 4, pp. 61-6.

  33. I. Hrivnak: Kovove Materially, 1973, vol. 11, pp. 136-43.

    CAS  Google Scholar 

  34. O. Dremailova, V.Y. Gertsman, J. Li, and J.T. Bowker: “Analysis of Nb-rich and Ti-rich Melt Additions and J55 Steel,” CANMET-MTL, MTL 2005-4(CF), February 2005.

  35. S. Abraham, R. Klein, R. Bodnar, and O. Dremailova: MS&T 2006 Steel-Related Papers, AIST, 2006, pp. 501-19.

  36. S. Abraham, R. Klein, R. Bodnar, and O. Dremailova: MS&T 2006 Steel-Related Papers, AIST, 2006, pp. 521-534.

  37. “Formation of Fe-Nb-C Eutectic Phases During Continuous Slab Casting,” NiobelCon report, October 1, 2008.

  38. C.G. Schön, and A.S. Tenório: Intermetallics, vol. 4, 1996, pp. 211-6.

    Article  Google Scholar 

  39. Q. Tian, Y. Chen, J. Chen, G. Xu, and Y. Zheng: MS&T Conf. Proc., 2006, pp. 393-9.

  40. S. Kheirandish and A. Noorian: J. Iron & Steel Res. Int., vol. 15, no. 4, 2008, pp 61-6.

    Article  CAS  Google Scholar 

  41. C. Chang and J. Sengupta: AISTech, 2014 Conf. Proc., AIST, 2014, pp. 3043-51.

  42. S. Nafisi, A. Den Boer, and L. Collins: AISTech, 2014 Conf. Proc., AIST, 2014, pp. 1590-8.

  43. G. Krapf, E.G. Buyok, W.R. Bandi, and L.M. Melnick: J. Iron & Steel Int., 1973, pp. 353-56.

  44. F. Vodopivec, M. Gabrovsek, and B. Ralic: Met. Sci., 1975, vol. 9, pp. 324-6.

    Article  CAS  Google Scholar 

  45. V.K. Heikkinen and R.H. Packwood: Scand. J. of Metall., 1977, vol. 6, pp. 170-5.

    CAS  Google Scholar 

  46. S. Matsui, S. Sato, and T. Tanaka: Precipitation Limit of the Nb(C,N) Eutectic Colonies, 102nd ISIJ Meeting, November 1981.

  47. T. Gladman and E.F. Walker: Proc. of the Int. Symp. on Niobium, H. Stuart, ed., TMS, 1984, pp. 1061-79.

  48. R.F. Cappellini, R.L. Bodnar, T.D. Nelson and K.F. Reppert: First International Conference on Improved Coal-Fired Power Plants, A. Armor, W. Bakker, R. Jaffee and G. Touchton, eds., EPRI CS-5581-SR, 1988, pp. 5-255 –85.

  49. A.A. Filippenkov, A.G. Ryzhkov, V.V. Popov, A.E. Aksel’rod, V.I. Novik, and V.V. Burkhovetski: Steel in the USSR, 1991, vol. 21, pp. 86-7.

  50. C.L. Davis and M. Strangwood: Mater. Sci. and Tech., 2009, vol. 25, no. 9, pp. 1126-33.

    Article  CAS  Google Scholar 

  51. R.A. Mesquita: Microscopy Analysis of Undissolved Particles in a Nb-Ti Microalloyed Steel, RAF Consulting, Technical Report 02/2010.

  52. R.A. Mesquita: Large Particles in a Nb-Ti Microalloyed Steel: Part 2 – Transmission Electron Microscopy Analysis, RAF Consulting, Technical Report 07/2010.

  53. M.C. Carboni, R.A. Mesquita, E.B. Cruz, D.P. Fridman, and M.A.S. Nogueira: 42nd Int. Steelmaking Seminar Proc., 2011, pp. 476-88.

  54. J. Bernetic, B. Bradaskja, G. Kosec, E. Bricelj, B. Kostec, F. Vodopivec, and L. Kosec, Metallurgija: 2010, vol. 49, no. 1, pp. 29-32.

  55. M. Sharma, S. Richter, U. Prahl, and W. Bleck: Steel Res. Int., 2017, vol. 88, no. 10, paper no. 1700092, pp. 1-12.

  56. A. Maitre, D.G. Ivey, and H. Henein: MS&T Conf. Proc., 2014, pp. 679-86.

  57. C.I. Garcia and A. Perea-Garduno: The 2nd Int. Symp. on the Recent Developments in Plate Steels, AIST, 2018, pp. 287-96.

  58. R.A. Mesquita: The 2nd Int. Symp. on the Recent Developments in Plate Steels, AIST, 2018, pp. 317-328.

  59. J. Cheng, Z. Wang, Y. Xue, Z. Wang, B. Zhou, and S. Tao: “HSLA Steels: Metallurgy and Applications, J.M. Gray, T. Ko, Z. Shouhua, W. Baorong, and X. Xishan, eds., ASMI, 1986, pp. 771-5.

  60. A.K. Bhambri, T.Z. Kattamis, and J.E. Morral: Metall. Trans. B, 1975, vol. 6B, pp. 523-37.

    Article  CAS  Google Scholar 

  61. R. Kesri, and M. Durand-Charre: J. Mater. Sci., 1987, vol. 22, p. 2959-64.

    Article  CAS  Google Scholar 

  62. S.C. Fegan, T.Z. Kattamis, and J.E. Morral: J. Mater. Sci., 1975, vol. 10, pp. 1266-70.

    Article  CAS  Google Scholar 

  63. F. Jeglitsch: Niobium Sci. & Tech., TMS, 2001, pp. 1001-39.

  64. S. Wilmes and G. Zwick: 6th Int. Tooling Conference Proc., 2002, pp. 269-87.

  65. D. Jarreta and M. Wright: CAMS 2014, November 2014.

  66. I. Garcia: The Effect of Coarse NbC Particles and Final Microstructure on the HIC Behavior and X65/X70 Steel Plates for Sour Gas Applications, presented at the AIST Joint Plate Rolling/Metallurgy – Processing, Products, and Applications Technology Committee meeting, Greensboro, NC, March 3 & 4, 2020.

  67. C.I. Garcia and A.J. DeArdo: Microstructural Analysis of Low-C, High-Nb Continuously Cast Steels, submitted to G. Tither, Reference Metals Co., 1998.

    Google Scholar 

  68. R. Mendoza, J. Huante, M. Alanis, C. Gonzalez-Rivera, and J.A. Juarez-Islas: Iron and Steelmaking, 1999, vol. 26, no. 3, pp. 205-9.

    Article  CAS  Google Scholar 

  69. R. Mendoza, J. Hunate, V. Camacho, O. Alvarez-Fregoso, and J.A. Juarez-Islas: J. Mater. Eng. and Perform., 1999, vol. 8, no. 5, pp. 549-55.

  70. B-J. Lee: Metall. and Mater. Trans. A, 2001, vol. 32A, pp. 2423-39.

  71. P.H. Li, A.K. Ibraheem and R. Priestner: Mater. Sci. Forum, 1998, vols. 284-286, pp. 517-24.

    Article  Google Scholar 

  72. J. Miettinen: Metall. and Mater. Trans. B, 1997, vol. 28B, pp. 281-97.

    Article  CAS  Google Scholar 

  73. M. Gustavo, D.V. Cuppari and S.F. Santos: Metals, 2016, vol. 6, no. 250, pp. 1-17.

    Google Scholar 

  74. E. Paul: Bulletin of Alloy Phase Diagrams, vol. 7, No. 3, 1986, pp. 246-53.

    Article  Google Scholar 

  75. A.W. Den Boer: Characterization of Ferroniobium and the Thermodynamics and Kinetics of Dissolution of Niobium Compounds in Liquid Iron, Master Thesis, 2013, McMaster University, Hamilton, Canada.

  76. S.J.A. Shah, H. Henein, and D.G. Ivey: Mater. Character., 2013, vol. 78, pp. 96-107.

    Article  CAS  Google Scholar 

  77. A.W. Den Boer and D.V. Malakhov: Canad. Metallurg. Quarterly, 2014, vol. 53, no. 4, pp. 423-31.

    Article  CAS  Google Scholar 

  78. S.A. Argyropoulos and P.G. Sismanis: Metall. Trans. B, 1991, vol. 22B, no. 4, pp. 417-27.

    Article  CAS  Google Scholar 

  79. S.A. Argyropoulos and R.I.L. Guthrie: 65th Steelmaking Conf. Proc., ISS, 1982, vol. 65, pp. 156-67.

  80. S.A.Argyropoulos: I&SM, 1984, pp. 48-57.

  81. S.A. Argyropoulos: 42nd Electric Furnace Conf. Proc., ISS, 1984, vol. 42, pp. 133-48.

  82. C. Guimaraes: Niobium Ferroalloy and Niobium Additive for Steels, Cast Irons, and Other Metallic Alloys, International Patent No. WO 92/22675, granted December 23, 1992.

  83. L. Gourtsoyannis, R.I.L. Guthrie, and G.A. Ratz: 42nd Electric Furnace Conf. Proc., ISS, 1984, vol. 42, pp. 119-32.

  84. Y. Iguchi, N. Nobori, K. Saito, and T. Fuwa: Tetsu-to-Hagané, 1982, vol. 68, no. 6, pp. 89-96.

    Article  Google Scholar 

  85. M. Volmer and A. Weber: Z. Phys. Chem., 1926, vol. 119, pp. 277-301.

    Article  CAS  Google Scholar 

  86. R. Becker and W. Döring: Ann. Phys., 1935, vol. 24, pp. 719-52.

    Article  CAS  Google Scholar 

  87. J. Frenkel: J. Chem. Phys., 1939, vol. 7, no. 7, pp. 538-47.

    Article  CAS  Google Scholar 

  88. S. Karthika, T. K. Radhakrishman and P. Kalaichelvi: Cryst. Growth Des., 2016, vol. 16, pp. 6663-81.

    Article  CAS  Google Scholar 

  89. M. Perez, M. Dumont and D. Acevedo-Reyes: Acta Mater., 2008, pp. 2119-32.

  90. R. Kikuchi: J. Chem. Phys., 1967, vol. 47, no.5, pp. 1647-52.

    Google Scholar 

  91. D. Turnbull and J. C. Fisher: J. Chem. Phys., 1949, vol. 17, pp. 71-3.

    Article  CAS  Google Scholar 

  92. E.T. Turkdogan: J. Iron and Steel Inst., 1972, pp. 21-36.

  93. C.K. Sigmworth and J. F. Elliott, Metallur. Trans., 1973, vol. 4, pp. 105-13.

    Article  Google Scholar 

  94. D.W. Oxtoby: J. Phys.: Condens. Matter, 1992, vol. 4, pp. 7627-50.

    Google Scholar 

  95. D.W. Oxtoby: Acc. Chem. Res., 1998, vol. 31, pp. 91-7.

    Article  CAS  Google Scholar 

  96. K. Helen: Deoxidation Mechanisms in Liquid Steel, Ph.D. Thesis, 1996, Sheffield Hallam University, Sheffield, UK.

  97. O.M. Adaba: Oxide Inclusion Evolution and Factors that Influence their Size and Morphology, Ph.D. Thesis, 2019, Missouri S&T, Rolla, Missouri, U.S.A.

  98. K. Wasai and K. Mukai: Metall. and Mater. Trans. B, 1999, vol. 30B, pp. 1065-74.

    Article  CAS  Google Scholar 

  99. W.L. Worrell and J. Chipman: TMS, AIME, vol. 230, pp. 1682-6.

  100. W.L. Worrell and J. Chipman: J. Chem. Phys., vol. 68, no. 4, 1964, pp. 860-6.

    Article  CAS  Google Scholar 

  101. S.R. Shatynski: Oxid. of Metals, vol. 13, no. 2, 1979, pp. 105-17.

    Article  CAS  Google Scholar 

  102. L.B. Pankratz, W. W. Weller and K. K. Kelley: Bureau of Mines Report of Investigations Number 6446, 1964.

  103. F.D. Richardson: Phys. Chem. of Melts in Metall., Academic Press, 1974, vol. 2, pp. 394-422.

  104. T.S. Cham: Carbon Dissolution from Coke into Molten Iron, Ph.D. Thesis, 2007, The University of New South Wales, New South Wales, UK.

  105. W.H. Casey: J. Geophys. Res., 1987, vol. 92, no. B8, pp. 8007-13.

    Article  Google Scholar 

  106. P.G. Sismanis: The Dissolution of Niobium and Zirconium, Ph.D. Thesis, 1987, McGill University, Montreal, Canada.

  107. Y. Hou, S. Li and G. Cheng: Metall. and Mater. Trans A, 2018, vol. 49A. pp. 5445-57.

    Article  CAS  Google Scholar 

  108. Y. Hou and G. Cheng: Metall. and Mater. Trans. B, 2019, vol. 50B, pp. 1322-33.

    Article  CAS  Google Scholar 

  109. K. Krishnapisharody and G.A. Irons: Metall. And Mater. Trans. B, 2006, vol. 37B, pp. 763-72.

    Article  CAS  Google Scholar 

  110. K. Krishnapisharody and G.A. Irons: ISIJ Int., 2008, vol. 48, no. 12, pp. 1807-9.

    Article  CAS  Google Scholar 

  111. K. Yonezawa and K. Schwerdtfeger: Metall. and Mater. Trans. B, vol. 30B, 1999, pp. 411-8.

    Article  CAS  Google Scholar 

  112. K. Yonezawa and K. Schwerdtfeger: Metall. and Mater. Trans. B, vol. 30B, 1999, pp. 655-60.

    Article  CAS  Google Scholar 

  113. Subagyo, G.A. Brooks and G.A. Irons: ISIJ Int., 2003, vol. 43, no.2, pp. 262-3.

  114. Subagyo, G.A. Brooks, K.S. Coley and G. A. Irons: ISIJ Int., 2003, vol. 43, no. 7, pp. 983-9.

    Article  CAS  Google Scholar 

  115. K. Yonezawa and K. Schwerdtfeger: ISIJ Int., 2009, vol. 44, no. 1, pp. 217-9.

    Article  Google Scholar 

  116. M. Iguchi, K. Miyamoto, S. Yamashita, D. Iguchi and M. Zeze: ISIJ Int., 2004, vol. 44, no. 3, pp. 636-8.

    Article  CAS  Google Scholar 

  117. K. Krishnapisharody and G.A. Irons: Metall. and Mater. Trans. B, 2007, vol. 38B, pp. 367-75.

    Article  CAS  Google Scholar 

  118. A.E. Nielsen and O. Söhnely: J. Cryst. Growth, 1971, vol. 11, pp. 233-42.

    Article  CAS  Google Scholar 

  119. R. Mohanty, S. Bhandarkar and J. Estrin: AIChE J., 1990, vol. 36, no. 10, pp. 1536-44.

    Article  CAS  Google Scholar 

  120. P.G. Vekilov: The Royal Soc. Of Chem., 2010, pp. 2346-57.

  121. H. Sun, K. Mori, V. Sahajwalla and R.D. Pehlke: High Temp. Mater. and Proc., 1998, vol. 17, no. 4, pp. 257-70.

    Article  CAS  Google Scholar 

  122. H. Sun: ISIJ Int., 2005, vol. 45, no. 10, pp. 1482-8.

    Article  CAS  Google Scholar 

  123. J. Chipman: R. M. Alfred, L.W. Gott, R.B. Small, D.M. Wilson, C.N. Thomson, D.L. Guernsky, J.C. Fulton, Trans. ASM, 1952, vol. 44, pp. 1215-30.

  124. C. Wu and V. Sahajwalla: Metall. and Mater. Trans. B, 2000, vol. 31B, pp. 243-51.

    Article  CAS  Google Scholar 

  125. S. T. Cham, V. Sahajwallat, R. Sakurovs, H. Sun and M. Dubikova: ISIJ Int., 2004, vol. 44, no. 11, pp.1835-41.

    Article  CAS  Google Scholar 

  126. T. Young: Phil. Trans. R. Soc., 1805, vol. 95, pp. 65-87.

    Article  Google Scholar 

  127. D.F. Gerson: Colloid & Polymer Sci., 1982, vol. 260, pp. 539-44.

    Article  CAS  Google Scholar 

  128. M.G. Quesne, A. Roldan, N.H. De Leeuw and C.R.A. Catlow: Phys. Chem. Chem. Phys., 2018, vol. 20, pp. 6905-16.

    Article  CAS  Google Scholar 

  129. I. Jimbo, A. Shara and A.W. Cramb: Trans. ISS, 1994, vol. 7B, pp. 235-44.

    Google Scholar 

  130. J. Lee and, K. Yamamoto and K. Morita: Metall. and Mater. Trans. B, 2005, vol. 36B, pp. 241-6.

    Article  CAS  Google Scholar 

  131. J. Lee and K. Morita: ISIJ Int., 2002, vol. 42, no. 6, pp. 588-94.

    Article  CAS  Google Scholar 

  132. F.A. Halden and W.D. Kingery: J. Phys. Chem., 1955, pp. 557-9.

  133. F. Perrard, A. Deschamps, F. Bley, P. Donnadieu and P. Maugis: J. Appl. Cryst., 2006, vol. 39, pp. 473-482.

    Article  CAS  Google Scholar 

  134. S.S. Hansen, J.B. Vander and M. Cohen: Metall. Trans. A, 1980, vol. 11A, pp. 387-402.

    Article  CAS  Google Scholar 

  135. S. Vervynckt, P. Thibaux and K. Verbeken: Met. Mater. Int., 2012, vol. 18, no. 1, pp. 37-46.

    Article  CAS  Google Scholar 

  136. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda and S. Jansto: Mater. Sci. and Eng. A, 2007, vol. 460-461, pp. 335-43.

    Article  CAS  Google Scholar 

  137. E.V. Pereloma, B.R. Crawford and P.D. Hodgson: Mater. Sci. and Eng. A, 2001, vol. 299, pp. 27-37.

    Article  Google Scholar 

  138. R.D.K. Misra, H. Nathani, J.E. Hartmann and F. Siciliano: Mater. Sci. and Eng. A, 2005, vol. 394, pp. 339-52.

    Article  CAS  Google Scholar 

  139. J. Kim, J.-G. Jung, D.-H. Kim, Y.-K. Lee: Acta Mater., 2013, vol. 61, pp. 7437-7443.

    Article  CAS  Google Scholar 

  140. J. Dong, F. Siciliano Jr., J. J. Jonas, W. J. Liu and E. Essadiqi: ISIJ Int., 2000, vol. 40, no. 6, pp. 613-618.

    Article  CAS  Google Scholar 

  141. E.J. Palmiere, C.I. Garcia and A.J. DeArdo: Proc. of the Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, A.J. DeArdo, ed., ISS-AIME, 1992, pp. 113-33.

  142. C. Pfeiler, B.G. Thomas, M. Wu, A. Ludwig and A. Kharicha: Steel Res. Int., 2008, vol. 79, no. 8, pp. 599-607.

    Article  CAS  Google Scholar 

  143. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu and R. Chaudhary: Metall. and Mater. Trans. B, 2014, vol. 45B, pp. 22-35.

    Article  CAS  Google Scholar 

  144. L. Zhang: JOM, 2013, vol. 65, no. 9, pp. 1138-44.

    Article  CAS  Google Scholar 

  145. F.R. Juretzkot, B.K. Dhindaw, D.M. Stefanescu, S. Sen and P.A. Curreri: Metall. and Mater. Trans. A, 1998, vol. 29A, pp. 1691-6.

    Article  Google Scholar 

  146. A.D. Pitts-Dunan: Particle Engulfment and Pushing by Peritectic Systems, Thesis, 2006, The University of Alabama, Alabama.

  147. D.R. Uhlmann and B. Chalmers: J. Appl. Phys., 1964, vol. 35, no. 10, pp. 2986-93.

    Article  CAS  Google Scholar 

  148. M. L. Turpin and J.F. Elliott: JISI, 1966, pp. 217-25.

  149. H. Nordberg and B. Aronsson: JISI, 1968, pp. 1263-6.

  150. A.E.S. Van Driessche, M. Kellermeter, L. G. Benning and D. Gebauer: New Perspectives on Mineral Nucleation and Growth: From Solution Precursors to Solid Materials, Springer, 2017, pp. 1-40.

Download references

Acknowledgments

The authors would like to thank Ben Kowing and other SSAB senior managers for supporting this project. Special thanks to Josh Cottrell, Eric Lynch, Jacob Mineart, Matt Werner and Shane Hanssen for their contributions to this work. Also, the authors express their appreciation to Magnus Andersson, Jan-Erik Hedin, Fredrik Lindberg and Thorbjörn Hansén for overseeing and conducting some of the experiments at Swerim. The authors are also grateful to Lena Ryde and Hans Magnusson of Swerim for their review and comments. Finally, we would like to thank the reviewers at Metallurgical and Materials Transactions A for their thorough review and comments. Their comments undoubtedly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunday Abraham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 15, 2020; accepted May 2, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, S., Bodnar, R., Lonnqvist, J. et al. The Mechanism for Coarse Nb-Rich Particle Formation in Steel. Metall Mater Trans A 52, 3727–3749 (2021). https://doi.org/10.1007/s11661-021-06324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06324-3

Navigation