Skip to main content
Log in

Carbonitride precipitation in niobium/vanadium microalloyed steels

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A detailed study of carbonitride precipitation in niobium/vanadium microalloyed steels is presented. A thermodynamic model is developed to predict the austenite/carbonitride equilibrium in the Fe−Nb-V-C-N system, using published solubility data and the Hillert/Staffansson model for stoichiometric phases. The model can be used to estimate equilibrium austenite and carbonitride compositions, and the amounts of each phase, as a function of steel composition and temperature. The model also provides a method to estimate the carbonitride solution temperatures for different steel compositions. Actual carbonitride precipitation behavior in austenite is then examined in two experimental 0.03Nb steels containing 0.05V and 0.20V, respectively. Samples were solution treated, rolled at 954°C (20 pct or 50 pct), held isothermally for times up to 10,000 seconds at 843°C, 954°C, or 1066°C, and brine quenched. The process of carbonitride precipitation in deformed austenite is followed by analytical electron microscopy (AEM) of carbon extraction replicas. Precipitates are observed at prior-austenite grain boundaries, and also within the grains (presumably at substructure introduced by the rolling deformation). Analysis of the grain-boundary and matrix precipitate compositions by AEM indicates that the grain-boundary precipitates are consistently richer in vanadium than the matrix precipitates, although compositional trends with holding time and temperature are similar for the two types of precipitates. The compositions of both the grain-boundary and matrix precipitates are not significantly influenced by the rolling reduction or the holding time at temperature. As predicted by the thermodynamic model, the precipitates become more vanadium-rich as the vanadium level in the steel is increased and as the temperature is reduced. The agreement between the measured and predicted precipitate compositions is quite good for the grain-boundary precipitates, although the matrix precipitates are consistently more niobium-rich than predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Microalloying 75, Proceedings, Union Carbide Corporation, New York, NY, 1977.

  2. The Hot Deformation of Austenite, J. B. Ballance, ed., TMS-AIME, New York, NY 1977.

    Google Scholar 

  3. Thermomechanical Processing of Microalloyed Austenite, A. J. DeArdo, G. A. Ratz, and P. J. Wray, eds., TMS-AIME, New York, NY, 1982.

    Google Scholar 

  4. S. S. Hansen, J. B. VanderSande, and Morris Cohen:Metall. Trans. A, 1980, vol. 11A, pp. 387–402.

    Article  Google Scholar 

  5. R. Coladas, J. Masounave, and J. P. Bailon:The Hot Deformation of Austenite, TMS-AIME, New York, NY, 1977, pp. 341–77.

    Google Scholar 

  6. S. Yamamoto, C. Ouchi, and T. Osuka.Thermomechanical Processing of Microalloyed Austenite, TMS-AIME, New York, NY, 1982, pp. 613–38.

    Google Scholar 

  7. G. Fitzsimons, K. Tiitto, R. Fix, and A. J. DeArdo:Metall. Trans. A, 1984, vol. 15A, pp. 241–43.

    Article  Google Scholar 

  8. H. L. Andrade, M. G. Akben, and J. J. Jonas:Metall. Trans. A, 1983, vol. 14A, pp. 1967–77.

    Article  Google Scholar 

  9. J. G. Speer, S. Mehta, and S. S. Hansen:Scripta Metall., 1984, vol. 18, pp. 1241–44.

    Article  Google Scholar 

  10. R. C. Hudd, A. Jones, and M. N. Kale:J. Iron Steel Inst., 1971, vol. 211, pp. 121–25.

    Google Scholar 

  11. H. Nordberg and B. Aronsson:J. Iron Steel Inst., 1968, vol. 206, pp. 1263–66.

    Google Scholar 

  12. W. Roberts, A. Sandberg, and T. Siwecki: Presented at the VANITEC Conference, Krakow, Poland, 1980, pp. D1–D12.

  13. R. C. Sharma, V. K. Lakshmanan, and J. S. Kirkaldy:Metall. Trans. A, 1984, vol. 15A, pp. 545–53.

    Article  Google Scholar 

  14. M. J. Crooks, A. J. Garratt-Reed, J. B. VanderSande, and W. S. Owen:Metall. Trans. A, 1981, vol. 12A, pp. 1999–2013.

    Article  Google Scholar 

  15. S. Mehta, J. G. Speer, and S. S. Hansen:Analytical Electron Microscopy/ 1984, San Francisco Press, Inc., San Francisco, CA, 1984, pp. 173–76.

    Google Scholar 

  16. J. R. Michael:Materials Problem Solving with the Transmission Electron Microscope, Materials Research Society, Pittsburgh, PA, 1986, pp. 263–72.

    Google Scholar 

  17. D. C. Houghton, G. C. Weatherly, and J. D. Embury,Thermomechanical Processing of Microalloyed Austenite, TMS-AIME, New York, NY, 1982, pp. 267–92.

    Google Scholar 

  18. J. Strid and K. E. Easterling:Acta Metall., 1985, vol. 33, pp. 2057–74.

    Article  Google Scholar 

  19. S. R. Keown and W. G. Wilson:Thermomechanical Processing of Microalloyed Austenite, TMS-AIME, New York, NY, 1982, pp. 343–56.

    Google Scholar 

  20. M. Grujicic, A. M. Sarosiek, L. Kaufman, and W. S. Owen:CALPHAD, 1985, vol. 9, pp. 117–28.

    Article  Google Scholar 

  21. M. Grujicic, L. Kaufman, and W. S. Owen: private communication, Massachusetts Institute of Technology, Cambridge, MA, 1984.

  22. J. G. Speer: Bethlehem Steel Corp. Internal Report R507-E1-A249, July 16, 1984.

  23. L. Kaufman:CALPHAD, 1985, vol. 9, pp. 201–26.

    Article  Google Scholar 

  24. Hugh Ford and J. M. Alexander:J. Inst. Metals, 1964, vol. 92, pp. 397–404.

    Google Scholar 

  25. G. Cliff and G. W. Lorimer:J. Micros., 1975, vol. 103, pp. 203–07.

    Article  Google Scholar 

  26. D. B. Williams, D. E. Newbury, J. I. Goldstein, and C. E. Fiori:J. Micros., 1984, vol. 136, pp. 209–18.

    Article  Google Scholar 

  27. N. J. Zaluzec:Analytical Electron Microscopy/1984, San Francisco Press, Inc., San Francisco, CA, 1984, pp. 279–84.

    Google Scholar 

  28. D. B. Williams:Practical Analytical Electron Microscopy in Materials Science, Philips Electronic Instruments, Mahwah, NJ, 1984, pp. 75–82.

    Google Scholar 

  29. S. P. Duckworth and T. N. Baker:Analytical Electron Microscopy/1984, San Francisco Press, Inc., San Francisco, CA, 1984, pp. 239–42.

    Google Scholar 

  30. H. J. Goldschmid:Interstitial Alloys, Plenum Press, New York, NY, 1967, pp. 88–253.

    Book  Google Scholar 

  31. M. Hillert and L. I. Staffansson:Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    Article  Google Scholar 

  32. M. Temkin:Acta Physicochemica U.R.S.S., 1945, vol. 20, pp. 411–20.

    Google Scholar 

  33. P. Grieveson:Proc. Brit. Ceram. Soc., 1967, vol. 8, pp. 137–53.

    Google Scholar 

  34. W. Roberts and A. Sandberg: Swedish Institute for Metals Research Report No. IM-1489, Stockholm, 1980.

  35. K. J. Irvine, F. B. Pickering, and T. Gladman:J. Iron Steel Inst., 1967, vol. 205, pp. 161–82.

    Google Scholar 

  36. K. Narita:Trans. I.S.I.J., 1975, vol. 15, pp. 145–51.

    Google Scholar 

  37. M. J. Frohberg and H. Graf:Stahl Eisen., 1960, vol. 80, pp. 539–41.

    Google Scholar 

  38. R. P. Smith:Trans. AIME, 1962, vol. 224, pp. 190–91.

    Google Scholar 

  39. V. K. Lakshmanan and J. S. Kirkaldy:Metall. Trans. A, 1984, vol. 15A, pp. 541–44.

    Article  Google Scholar 

  40. R. P. Smith:Trans. AIME, 1966, vol. 236, pp. 220–21.

    Google Scholar 

  41. A. de Bon, J. Rofes-Vernis, and C. Rossard:Metal Science, 1975, vol. 9, pp. 36–40.

    Article  Google Scholar 

  42. M. Raghavan:Metall. Trans. A. 1980, vol. 11A, pp. 993–99.

    Article  Google Scholar 

  43. S. M. Merchant, M. R. Notis, and D. B. Williams:Metall. Trans. A, 1983, vol. 14A, pp. 1825–31.

    Article  Google Scholar 

  44. W. C. Leslie, R. L. Rickett, C. L. Dotson, and C. S. Walton:Trans. ASM, 1954, vol. 46, pp. 1470–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speer, J.G., Michael, J.R. & Hansen, S.S. Carbonitride precipitation in niobium/vanadium microalloyed steels. Metall Trans A 18, 211–222 (1987). https://doi.org/10.1007/BF02825702

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02825702

Keywords

Navigation