Skip to main content
Log in

Cast microstructure of Inconel 713C and its dependence on solidification variables

  • Solidification
  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The dependence of cast microstructure of Inconel 713C on solidification variables was investigated over a wide range of local cooling rates, ∈, and thermal gradients in the liquid at the solid-liquid interface,G. The shape of MC carbide particles was found to depend greatly on: 1) theG/R ratio at the solid-liquid interface, whereR is growth rate, through the effect of this ratio on the solid phase,γ γ , growth morphology. Under planar front growth conditions the carbide particles were octahedral, under cellular growth conditions they were plate-like, elongated along the cellular growth direction, and under dendritic growth conditions they were irregularly shaped; 2) the local cooling rate, ∈, when γ was dendritic, with a transition from octahedral to dendritic with increasing ∈. The size of MC carbide particles was found to be controlled by coarsening and to become finer with increasing ∈. In this alloy the composition of the MC carbide was established as (Nb0.63Ti0.31Mo0.06) C and was practically independent of local cooling rate. Other observations were that the precipitation of γ′ and the formation of nonequilibrium eutectics, such as MC-γ, γ-γ′ or MC-γ-γ′ were suppressed at splat-cooling rates. Also, microsegregation of all alloying elements with the exception of aluminum was normal, with concentration increasing from the dendrite center-line to the dendrite arm boundary. Aluminum behaved in the opposite manner. Within the cooling rate range used herein, this variable had only a slight effect on microsegregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Sims:J. Metals, 1966, pp. 1119–30.

  2. B. J. Picarcey, B. H. Kear, and R. W. Smashey:Trans. ASM, 1967, vol. 60. pp. 634–44.

    Google Scholar 

  3. R. A. Gregg and B. J. Piearcey:Trans. TMS-AIME, 1964, vol. 239, pp. 599–600.

    Google Scholar 

  4. E. P. Whelan:J. Inst. Metals, 1972, vol. 100, pp. 333–35.

    CAS  Google Scholar 

  5. H. E. Collins:Trans. ASM, 1969, vol. 62, pp. 82–84.

    CAS  Google Scholar 

  6. J. R. Mihalisin, G. G. Biever, and R. T. Grant:Trans. TMS-AIME, 1968, vol. 242, pp. 2399–414.

    CAS  Google Scholar 

  7. J. F. Radavich: Technical Report, Micro-Me: Laboratories, Inc., West Lafayette, Indiana.

  8. B. J. Piercey and R. W. Smashey:Trans. TMS-AIME, 1967, vol. 239, pp. 4451–57.

    Google Scholar 

  9. S. C. Fegan, T. Z. Kattamis, A. K. Bhambri, and J. E. Morral:J. Mater. Sci., 1975, vol. 10, pp. 1266–1270.

    Article  CAS  Google Scholar 

  10. M. Gell and G. R. Leverant:Trans. TMS-AIME, 1968, vol. 242, pp. 1869–79.

    Google Scholar 

  11. J. K. Tien and R. P. Gamble:Proc. 2nd Inter. Conf. on the Strength of Metals and Alloys, pp. 1037–41. ASM, Metals Park, Ohio, 1970.

    Google Scholar 

  12. J. K. Tien and R. P. Gamble:Mater. Sci. Eng., 1971, vol. 8, pp. 152–60.

    Article  CAS  Google Scholar 

  13. B. J. Piearcey and B. E. Terkelsen:Trans. TMS-AIME, 1967, vol. 239, pp. 1143–50.

    CAS  Google Scholar 

  14. J. E. Hillard and J. W. Cahn:Trans. TMS-AIME, 1961, vol. 221, pp. 344–52.

    Google Scholar 

  15. J. Gurland:Quantitative Microscopy, pp. 344–52, McGraw-Hill, 1968.

  16. H. H. Hausner:Planseeber. Pulvermet., 1966, bd 14, pp. 75–84.

    CAS  Google Scholar 

  17. G. S. Cole and R. S. Cremisio:The Superalloys, pp. 479–508, Wiley-Interscience, 1972.

  18. G. S. Cole and G. F. Bolling:The Solidification of Metals, pp. 323–29, ISI Publication 110, 1968.

  19. G. Merz: Private Communication, University of Connecticut. Storrs, Conn.

  20. D. R. Uhlmann, B. Chalmers, and K. A. Jackson:J. Appl. Phys., 1964, vol. 35, pp. 2986–93.

    Article  CAS  Google Scholar 

  21. D. Jaffery and G. A. Chadwick:Phil. Mag., 1968, vol. 18, pp. 573–88.

    Article  Google Scholar 

  22. M. H. Burden and H. Jones:J. Inst. Metals, 1970, vol. 98, pp. 249–52.

    CAS  Google Scholar 

  23. E. Scheil and Y. Masuda:Aluminum, 1955, vol. 31, p. 51.

    Google Scholar 

  24. A. K. Bhambri and T. Z. Kattamis:Scr. Met., 1971, vol. 5, pp. 53–58.

    Article  CAS  Google Scholar 

  25. J. E. Doherty, B. H. Kear, and A. F. Giamei:J. Metals, 1971, vol. 23, pp. 59–62.

    CAS  Google Scholar 

  26. P. S. Kotval, J. D. Venables, and R. W. Calder:Met. Trans. 1972, vol. 3, pp. 453–58.

    CAS  Google Scholar 

  27. C. Mascré:The Solidification of Metals, p. 126, ISI Publication 110, 1968.

  28. A. J. Ardell:Met. Trans., 1970, vol. 1, pp. 525–34.

    CAS  Google Scholar 

  29. W. A. Tiller:Liquid Metals Solidification Semin, 1958, p. 276.

  30. A. Taylor and R. W. Floyd:J. Inst. Metals, 1952-53, vol. 81, pp. 451–64.

    Google Scholar 

  31. T. F. Bower, M. Bergeron, F. Weinberg and R. K. Bular,Trans TMS-AIME, 1968, vol. 242, pp. 853–58.

    Google Scholar 

  32. M. C. Flemings, D. R. Poirier, R. V. Barone, and H. D. Brody:J Iron Steel Inst., April, 1970, pp. 371–81.

    Google Scholar 

  33. T. Z. Kattamis and M. C. Flemings:Trans. TMS-AIME, 1965, vol. 233, pp. 992–99.

    CAS  Google Scholar 

  34. H. Thresh, M. Bergeron, F. Weinberg, and R. K. Buhr:Trans. TMS-AIME, 1968, vol. 242, pp. 858.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhambri, A.K., Kattamis, T.Z. & Morral, J.E. Cast microstructure of Inconel 713C and its dependence on solidification variables. Metall Trans B 6, 523–537 (1975). https://doi.org/10.1007/BF02913844

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913844

Keywords

Navigation