Skip to main content
Log in

In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] E. DeMoor, P. J. Gibbs, J. G. Speer, D. K. Matlock, AIST Transactions, 2010, vol. 7, pp. 133-144.

    Google Scholar 

  2. [2] V. F. Zackay, E. R. Parker, D. Fahr, R. Busch, ASM Trans Quart, 1967, vol. 60, pp. 252-259.

    Google Scholar 

  3. [3] S. Martin, C. Ullrich, D. Rafaja, Materials Today: Proceedings, 2015, vol. 2, pp. S643-S646.

    Article  Google Scholar 

  4. [4] R. B. Figueiredo, F. L. Sicupira, L. R. Malheiros, M. Kawasaki, D. B. Santos, T. G. Langdon, Materials Science and Engineering: A, 2015, vol. 625, pp. 114-118.

    Article  Google Scholar 

  5. [5] B. C. De Cooman, P. Gibbs, S. Lee, D. K. Matlock, Metall and Mat Trans A, 2013, vol. 44, pp. 2563-2572.

    Article  Google Scholar 

  6. [6] D. W. Suh, J. H. Ryu, M. S. Joo, H. S. Yang, K. Lee, H. K. D. H. Bhadeshia, Metall and Mat Trans A, 2013, vol. 44, pp. 286-293.

    Article  Google Scholar 

  7. 7.R. Kuziak, R. Kawalla, S. Waengler, Archives of Civil and Mechanical Engineering, 2008, vol. 8, pp. 103-117.

    Article  Google Scholar 

  8. [8] W. J. Dan, W. G. Zhang, S. H. Li, Z. Q. Lin, Computational Materials Science, 2007, vol. 39, pp. 593-599.

    Article  Google Scholar 

  9. J. Coryell, V. Savic, L. Hector, and S. Mishra: SAE Technical Paper, 2013, vol. 2013-01-0610,

  10. [10] N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, S. van der Zwaag, Acta Materialia, 2005, vol. 53, pp. 5439-5447.

    Article  Google Scholar 

  11. [11] T. K. Shan, S. H. Li, W. G. Zhang, Z. G. Xu, Materials & Design, 2008, vol. 29, pp. 1810-1816.

    Article  Google Scholar 

  12. [12] P. J. Gibbs, E. De Moor, M. J. Merwin, B. Clausen, J. G. Speer, D. K. Matlock, Metall and Mat Trans A, 2011, vol. 42, pp. 3691-3702.

    Article  Google Scholar 

  13. [13] P. J. Jacques, S. Allain, O. Bouaziz, A. De, A. F. Gourgues, B. M. Hance, Y. Houbaert, J. Huang, A. Iza-Mendia, S. E. Kruger, M. Radu, L. Samek, J. Speer, L. Zhao, S. van der Zwaag, Mater. Sci. Technol., 2009, vol. 25, pp. 567-574.

    Article  Google Scholar 

  14. W. Poling, V. Savic, L. Hector, A. Sachdev, X.H. Hu, A. Devaraj, and F. Abu-Farha: SAE Technical Paper, 2016, vol. 2016-01-0419, pp. https://doi.org/10.4271/2016-01-0419

  15. [15] E. Jimenez-Melero, N. H. van Dijk, L. Zhao, J. Sietsma, J. P. Wright, S. van der Zwaag, Materials Science and Engineering: A, 2011, vol. 528, pp. 6407-6416.

    Article  Google Scholar 

  16. [16] U. Klemradt, T. Rieger, K. Herrmann, D. Carmele, S. Meyer, T. Lippmann, A. Stark, W. Bleck, Acta Physica Polonica-Series A General Physics, 2012, vol. 121, pp. 39-43.

    Article  Google Scholar 

  17. [17] R. Blonde, E. Jimenez-Melero, L. Zhao, J. P. Wright, E. Bruck, S. van der Zwaag, N. H. van Dijk, Materials Science and Engineering: A, 2014, vol. 618, pp. 280-287.

    Article  Google Scholar 

  18. [18] H. J. Stone, M. J. Peet, H. K. D. H. Bhadeshia, P. J. Withers, S. S. Babu, E. D. Specht, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2008, vol. 464, pp. 1009-1027.

    Article  Google Scholar 

  19. [19] E. Cakmak, H. Choo, K. An, Y. Ren, Acta Materialia, 2012, vol. 60, pp. 6703-6713.

    Article  Google Scholar 

  20. [20] W. Wu, Y. W. Wang, P. Makrygiannis, F. Zhu, G. A. Thomas, L. G. Hector, X. Hu, X. Sun, Y. Ren, Materials Science and Engineering: A, 2018, vol. 711, pp. 611-623.

    Article  Google Scholar 

  21. [21] K. Yan, K. D. Liss, I. B. Timokhina, E. V. Pereloma, Materials Science and Engineering: A, 2016, vol. 662, pp. 185-197.

    Article  Google Scholar 

  22. [22] J. Zrnik, O. Muransky, P. Lukas, Z. Novy, P. Sittner, P. Hornak, Materials Science and Engineering: A, 2006, vol. 437, pp. 114-119.

    Article  Google Scholar 

  23. [23] O. Muransky, P. Lukas, J. Zrnik, P. Sittner, Physica B: Condensed Matter, 2006, vol. 385, pp. 587-589.

    Article  Google Scholar 

  24. 24. A. A. Saleh, D. W. Brown, E. V. Pereloma, B. Clausen, C. H. Davies, C. N. Tome, A. A. Gazder (2015) Appl. Phys. Lett., vol. 106, 171911

    Article  Google Scholar 

  25. [25] K. Tao, D. W. Brown, S. C. Vogel, H. Choo, Metallurgical and Materials Transactions A, 2006, vol. 37, pp. 3469-3475.

    Article  Google Scholar 

  26. [26] T. Gnaupel-Herold, A. Creuziger, Materials Science and Engineering: A, 2011, vol. 528, pp. 3594-3600.

    Article  Google Scholar 

  27. [27] M. R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, E. Patoor, Materials Science and Engineering: A, 2004, vol. 378, pp. 304-307.

    Article  Google Scholar 

  28. [28] S. Brauser, A. Kromm, T. Kannengiesser, M. Rethmeier, Scripta Materialia, 2010, vol. 63, pp. 1149-1152.

    Article  Google Scholar 

  29. [29] A. Kromm, S. Brauser, T. Kannengi. Rethmeier, The Journal of Strain Analysis for Engineering Design, 2011, vol. 46, pp. 581-591.

    Article  Google Scholar 

  30. [30] Z. H. Cong, N. Jia, X. Sun, Y. Ren, J. Almer, Y. D. Wang, Metall and Mat Trans A, 2009, vol. 40, pp. 1383-1387.

    Article  Google Scholar 

  31. [31] X. H. Hu, K. S. Choi, X. Sun, Y. Ren, Y. D. Wang, Metall and Mat Trans A, 2016, vol. 47, pp. 5733-5749.

    Article  Google Scholar 

  32. [32] X. H. Hu, X. Sun, J. Hector, Y. Ren, Acta Materialia, 2017, vol. 132, pp. 230-244.

    Article  Google Scholar 

  33. 33.E. Hall: Yield Point Phenomena in Metals and Alloys. Springer, New York, 2012.

    Google Scholar 

  34. [34] P. G. McCormigk, Acta Metallurgica, 1972, vol. 20, pp. 351-354.

    Article  Google Scholar 

  35. [35] J. Speer, D. K. Matlock, B. C. De Cooman, J. G. Schroth, Acta Materialia, 2003, vol. 51, pp. 2611-2622.

    Article  Google Scholar 

  36. [36] F. E. Werner, B. L. Averbach, M. Cohen, Trans. ASM, 1957, vol. 49, pp. 823-841.

    Google Scholar 

  37. D.V. Edmonds, K. He, F. C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 25–34.

  38. B.C. De Cooman and S.W. Lee: The Mechanical Properties of 10-12% Mn Steels, 2013.

  39. 39.M. A. Sutton, J. J. Orteu, H. Schreier: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York (2009).

    Google Scholar 

  40. [40] J. A. Bearden, Reviews of Modern Physics, 1967, vol. 39, pp. 78-124.

    Article  Google Scholar 

  41. Origin86 Mannual. http://www.originlab.com/, 2015

  42. A. S. T. M. Standard, ASTM, West Conshohocken, PA, 2008.

  43. [43] X. C. Xiong, B. Chen, M. X. Huang, J. F. Wang, L. Wang, Scripta Materialia, 2013, vol. 68, pp. 321-324.

    Article  Google Scholar 

  44. [44] Y. F. Shen, Y. D. Wang, X. P. Liu, X. Sun, R. Lin Peng, S. Y. Zhang, L. Zuo, P. K. Liaw, Acta Materialia, 2013, vol. 61, pp. 6093-6106.

    Article  Google Scholar 

  45. [45] M. Cohen, Trans. TMS-AIME, 1962, vol. 224, pp. 638-657.

    Google Scholar 

  46. [46] G. B. Olson, M. Cohen, MTA, 1975, vol. 6, pp. 791-795.

    Article  Google Scholar 

  47. [47] D. T. Pierce, J. A. Jimenez, J. Bentley, D. Raabe, J. E. Wittig, Acta Materialia, 2015, vol. 100, pp. 178-190.

    Article  Google Scholar 

  48. [48] J. F. Butler, Journal of the Mechanics and Physics of Solids, 1962, vol. 10, pp. 313-318.

    Article  Google Scholar 

  49. [49] B. Reedlunn, S. Daly, L. Hector, P. Zavattieri, J. Shaw, Experimental Techniques, 2013, vol. 37, pp. 62-78.

    Article  Google Scholar 

  50. [50] H. Kato, K. Sasaki, International Journal of Plasticity, 2013, vol. 50, pp. 37-48.

    Article  Google Scholar 

  51. [51] P. D. Zavattieri, V. Savic, L. G. Hector, J. R. Fekete, W. Tong, Y. Xuan, International Journal of Plasticity, 2009, vol. 25, pp. 2298-2330.

    Article  Google Scholar 

  52. [52] D. A. Korzekwa, D. K. Matlock, G. Krauss, Metallurgical Transactions A, 1984, vol. 15, pp. 1221-1228.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-EE0005976, with the United States Automotive Materials Partnership LLC (USAMP). The DOE program name is “Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly.” This research used resources of the Advanced Photon Source (APS), a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Oak Ridge National Laboratory is operated by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC05-00OR22725. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. DOE under Contract No. DE-AC06-76RL01830. R. Spence kindly assisted the authors with the diffraction measurements at APS Beam line 11-ID-C. W. Poling kindly provided the authors with Figure 1(a). D. Matlock and J. Speer offered their expert assistance with development and manufacture of the 10 wt pctMn TRIP steel test specimens. BAO Steel in China provided the Q&P980 material with the support of J. Wang of the GM China Science Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Sun.

Additional information

Manuscript submitted April 25, 2017.

The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. US Department of Energy (DOE) will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Farha, F., Hu, X., Sun, X. et al. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels. Metall Mater Trans A 49, 2583–2596 (2018). https://doi.org/10.1007/s11661-018-4660-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4660-x

Navigation