Skip to main content
Log in

Mitigating intergranular attack and growth in lead-acid battery electrodes for extended cycle and operating life

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deterioration in the performance of lead acid batteries is primarily governed by weight loss and growth of the positive electrodes, arising from creep and intergranular corrosion/cracking. The present investigation examines the impact of increasing the frequency of grain boundaries having low-Σ misorientations (Σ≤29), described by the Coincident Site Lattice (CSL) model, which are known to be resistant to these intergranular degradation phenomena. Electrode microstructures of various PbCaSn alloys processed to contain frequencies of special boundaries (in excess of 50 pct) exhibited reductions in weight loss of between 26 and 46 pct accompanied by declines in grid growth of between 41 and 72 pct. Moreover, the distribution of intergranular attack/cracking in the microstructure of these alloys can be predicted on the basis of the frequency of low-Σ special boundaries and grain size. In general, improvements in corrosion and creep/cracking occur without compromising tensile properties such as yield strength, ultimate tensile strength (UTS), and ductility. Modifying the crystallographic structure of grain boundaries in Pb alloy battery electrodes, thus, provides an opportunity for minimizing grid thicknesses (weight) and, hence, material costs in battery production, or for maximizing energy densities (Wh/kg) and cycle life performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Lander: J. Electrochem. Soc., 1968, vol. 98, pp. 220–24.

    Google Scholar 

  2. H. Bode: Lead Acid Batteries, Wiley Interscience, New York, NY, 1977, pp. 322–46.

    Google Scholar 

  3. R. David Prengaman: J. Power Sources, 1995, vol. 53, pp. 207–14.

    Article  Google Scholar 

  4. H.G. Frost and M.F. Ashby: Deformation Mechanisms Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, NY, 1978.

    Google Scholar 

  5. M.J. Riezenman: The Search for Better Batteries, IEEE Spectrum vol. 32, 1995, May, pp. 51–56.

  6. H. Oman: 9th Annual Battery Conf. on Advances and Applications, IEE AES Systems Mag., 1994, vol. 9, pp. 25–31.

    Google Scholar 

  7. D. Berndt: The Lead-Acid Battery Fundamentals and Principals of Operation, Varta Batteries Ltee Publication; Lachine, PQ, 1984.

    Google Scholar 

  8. G. Palumbo and K.T. Aust: Acta. Metall., 1990, vol. 38, pp. 2343–52.

    Article  CAS  Google Scholar 

  9. P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Scripta. Metall., 1995, vol. 33, pp. 1387–92.

    Article  CAS  Google Scholar 

  10. C. Cheung, G. Palumbo, and U. Erb: Mater. Sci. Eng. A, 1994, vol. 185, pp. 39–43.

    Article  Google Scholar 

  11. T. Watanabe: Res. Mechanica, 1984, vol. 11, pp. 47–84.

    CAS  Google Scholar 

  12. H. Kokawa, T. Watanabe, and S. Karashima: Phil. Mag. A, 1981, vol. 44, pp. 1239–54.

    CAS  Google Scholar 

  13. G. Palumbo and K.T. Aust.: in Materials Interfaces D. Wolf and S. Yip, eds., Chapman & Hall, London, 1992, pp. 190–211.

    Google Scholar 

  14. K.T. Aust, U. Erb, and G. Palumbo: Interfacial Structures and Properties, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, N. Nastasi ed., Kluwer Academic Publishers, Netherlands, 1993, pp. 107–28.

    Google Scholar 

  15. G. Palumbo, P.J. King, K.T. Aust, U. Erb, and P.C. Lichtenberger: Scripta Metall. Mater., 1991, vol. 25, pp. 1775–80.

    Article  CAS  Google Scholar 

  16. G. Palumbo, E.M. Lehockey, and A.M. Brennenstuhl: “Method of Processing Lead and Lead Alloys, for Use in Lead-Acid Batteries and Other Applications,” U.S. Patent File No. 08/609,326, patent pending.

  17. E.M. Lehockey, G. Palumbo, A. Brennenstuhl, and P. Lin: Res. Soc. Symp. Proc. vol. 458, 1997, pp. 234–48.

    Google Scholar 

  18. B. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.

    CAS  Google Scholar 

  19. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  20. E.M. Valeriote, J. Sklarchik, and M.S. Ho: Proc. Symp. on Advances in Lead-Acid Batteries, The Electrochemical Society, 1984, vol. 84-14, pp. 224–40.

  21. E.M. Valeriote: J. Electrochem. Soc., 1981, vol. 128 (7), pp. 1422–33.

    Article  Google Scholar 

  22. J. Sklarchuk, M.J. Dewar, E.M. Valeriote, and A.M. Vincze: J. Power Sources, 1993, vol. 42, pp. 47–53.

    Article  CAS  Google Scholar 

  23. N.Y. Tang and E.M. Valeriote: J. Electrochem. Soc., 1981, vol. 142 (7), pp. 2144–48.

    Article  Google Scholar 

  24. ASTM Annual Book of Standards, Specification E8, ASTM, Philadelphia, PA, 1997, vol. 10, p. 197.

  25. G. Palumbo, K.T. Aust, U. Erb, P.J. King, A.M. Brennenstuhl, and P.C. Lichtenberger: Phys. Status Solidi A, 1992, vol. 131, pp. 425–28.

    Article  Google Scholar 

  26. R.L. Fullman and J.C. Fisher: J. Appl. Phys., 1951, vol. 22, pp. 1350–55.

    Article  CAS  Google Scholar 

  27. E.M. Lehockey, G. Palumbo, and P. Lin: Scripta Mater., 1997, vol. 36, pp. 1211–18.

    Article  CAS  Google Scholar 

  28. K.T. Aust: Progr. Mater. Sci., 1980, vol. 10, pp. 27–48.

    Google Scholar 

  29. T. Watanabe: Scripta Metall., 1978, vol. 12, pp. 361–65.

    Article  CAS  Google Scholar 

  30. T. Watanabe: J. Phys., 1985, vol. C4, pp. 555–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehockey, E.M., Palumbo, G., Brennenstuhl, A. et al. Mitigating intergranular attack and growth in lead-acid battery electrodes for extended cycle and operating life. Metall Mater Trans A 29, 387–396 (1998). https://doi.org/10.1007/s11661-998-0190-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0190-2

Keywords

Navigation