Skip to main content
Log in

An Innovative Electrolysis Approach for the Synthesis of Metal Matrix Bulk Nanocomposites: A Case Study on Copper-Niobium System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Design and synthesis of a prototype Cu-Nb nanocomposite are presented. Oxygen-free Cu-Nb nanocomposites were prepared using an electrolysis facility with special emphasis on the cathodic deoxidation of Cu and nanometric Nb2O5 blends in a molten NaCl-CaCl2 electrolyte. The as-prepared nanocomposites were characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy. The elemental analysis of the Cu matrix and Nb phase revealed the high solubility of Nb in the Cu structure (0.85 at. pct) and Cu in the Nb structure (10.59 at. pct) over short synthesis times (4–5 hours). Furthermore, precise analysis using field emission scanning electron microscopy and transmission electron microscopy confirmed the unique structure and nanocomposite morphology of the Cu-Nb nanocomposite. The successful synthesis of Cu-Nb nanocomposites offers a new conceptual and empirical outlook on the generation of bulk nanostructures of immiscible bimetals using electro-synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Koch: Bulk Behavior of Nanostructured Materials, in: Nanostructure Science and Technology, Springer Netherlands, 1999, pp. 93-111

    Chapter  Google Scholar 

  2. E. Ma: Progress in Materials Science 2005, vol. 50, pp. 413–509.

    Article  Google Scholar 

  3. M. P. Andrews, S. C. O’Brien: J. Phys. Chem. 1992, vol. 96, pp. 8233 –8241.

    Article  Google Scholar 

  4. J.S. Bradley, E. W. Hill, C. Klein, B. Chaudret, A. Duteil: Chem. Mater. 1993, vol. 5, pp. 254–256.

    Article  Google Scholar 

  5. R. Ferrando, J. Jellinek, R. L. Johnston: Chem. Rev. 2008, vol. 108, pp. 845–910.

    Article  Google Scholar 

  6. K. Kusada, et al.: J. Am. Chem. Soc. 2014, vol. 136, pp. 1864–1871.

    Article  Google Scholar 

  7. H. Kobayashi, K. Kusada, H. Kitagawa: Acc. Chem. Res. 2015, vol. 48, pp. 1551-1559.

    Article  Google Scholar 

  8. T. Ishimoto, M. Koyama: J. Phys. Chem. Let. 2016, vol. 7, pp.736-740.

    Article  Google Scholar 

  9. L. Kaufman: Calphad 1978, vol. 2, pp. 117–46.

    Article  Google Scholar 

  10. D. Li, M. Robinson, T. Rathz, G. Wiliams: Acta Materailia 1998, vol. 46, pp. 3849-3855.

    Article  Google Scholar 

  11. W. A. Spitzig, H. L. Downing, F. C. Laabs, E. D. Gibson: Metallurgical Transactions A 1993, vol. 24, pp 7–14.

    Article  Google Scholar 

  12. D. Raabe, F. Heringhaus, U. HanKen, G. Gottstein: Z. Metallkd. 1995, vol. 86, pp. 405-415.

    Google Scholar 

  13. F. Heringhaus, D. Raabe, G. Gottstein: Acta Metallurgica et Materialia 1995, vol. 43, pp. 1467-1476.

    Article  Google Scholar 

  14. F. Dupouy, E. Snoeck, M.J. Casanove, C. Roucau, J.P. Peyrade, S. Askenazy: Scripta Mater. 1996, vol. 34, pp. 1067-1073.

    Article  Google Scholar 

  15. M. J. R. Sandim, D. Stamopoulos, H. R. Z. Sandim, L. Ghivelder, L. Thilly, V. Vidal, F. Lecouturier, D. Raabe: Superconductor Science and Technology 2006, vol. 19, pp. 1233–1239.

    Article  Google Scholar 

  16. P. N. Degtyarenko, A. S. Ivanov, V. S. Kruglov, I. F. Voloshin: Journal of Physics: Conference Series 97, 2008, 012024.

    Article  Google Scholar 

  17. P.D. Funkenbusch, T.H. Courtney: Scr. Metall. 1989, vol. 23, pp. 1719-1724.

    Article  Google Scholar 

  18. U. Hangen, D. Rabbe: Acta Metall. Mater. 1995, vol. 43, pp. 4075-4082.

    Article  Google Scholar 

  19. E. Botcharova, J. Freudenberger, L. Schultz: Journal of Alloys and Compounds 2004, vol. 365, pp. 157–163.

    Article  Google Scholar 

  20. E. Botcharova, J. Freudenberger, A. Gaganov, K. Khlopkov, L. Schultz: Materials Science and Engineering A 2006, vol. 416, pp. 261-268.

    Article  Google Scholar 

  21. A. Munitz, M. Bamberger, A. Venkert, P. Landau, R. Abbaschian: J. mater. Sci. 2009, vol. 44, pp. 64-73.

    Article  Google Scholar 

  22. A. Puthucode, M. J. Kaufman, R. Banerjee: Metallurgical Transactions A 2008, vol. 39, pp 1578–1584.

    Article  Google Scholar 

  23. J. S. Carpenter, R. J. McCabe, S. J. Zheng, T. A. Wynn, N. A. Mara, I. J. Beyerlein: Metallurgical Transactions A 2014, vol. 45, pp. 2192-2208.

    Article  Google Scholar 

  24. G. Z. Chen, D. J. Fray, T. W. Farthing: Nature 2000, vol. 407, pp. 361-364.

    Article  Google Scholar 

  25. B.A. Glowacki, D.J. Fray, X-Y. Yan, G. Z. Chen: Physica C 2003, vol. 387, pp. 242–246.

    Article  Google Scholar 

  26. Q .Xu, C. Schwandt, D. J. Fray: Adv. Mater. Res. 2010, vol. 160-162, pp 1131-1135.

    Article  Google Scholar 

  27. Y. Zhu, M. Ma, D. Wang, K. Jiang, X. Hu, X. Jin, G. Z. Chen: Chinese Science Bulletin 2006, vol. 51, pp. 2535-2540.

    Article  Google Scholar 

  28. M. Anik, B. Baksan, T. Ö. Orbay, N. Küçükdeveci, A. B. Aybar, R. C. Özden, H. Gaşan, N. Koç: Intermetallics 2014, vol. 46, pp. 51–55.

    Article  Google Scholar 

  29. X.Y. Yan, D. J. Fray: Metall. Mater. Trans. B 2002, vol. 33, pp. 685-693.

    Article  Google Scholar 

  30. Q. S. Song, Q. Xu, R. Tao, X. Kang: Int. J. Electrochemical Science 2012, vol. 7, pp. 272 – 281.

    Google Scholar 

  31. K. Ono, R. Suzuki: JOM 2002, vol. 54, pp. 59

    Article  Google Scholar 

  32. R. O. Suzuki, J. Phys. Chem. Solids 2005, vol. 66, pp. 461.

    Article  Google Scholar 

  33. C. Schwandt, D. J. Fray: Electrochimica Acta 2005, vol. 51, pp. 66-76.

    Article  Google Scholar 

  34. A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, JOHN WILEY & SONS, INC., New York, 2001, pp.161-174.

    Google Scholar 

  35. C. K. Hu, L. Gignac, R. Rosenberg: Microelectronics Reliability 2006, vol. 46, pp. 213–231.

    Article  Google Scholar 

  36. Q. Xu, L.-Q. Deng, Y. Wu, T. Ma: Journal of Alloys and Compounds 2005, vol. 396, pp. 288–294.

    Article  Google Scholar 

  37. R. Malik, D. Burch, M. Bazant, G. Ceder: Nano Lett. 2010, vol. 10, pp.4123–4127.

    Article  Google Scholar 

  38. A.M. Abdelkader, K. T. Kilby, A. Cox, D. J. Fray: Chem. Rev. 2013, vol. 113, pp. 2863–2886.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support by the Materials and Energy Research Center (MERC), the Govt. of Iran. The authors wish to thank Mr. Dr. Alizadeh and Mrs. Dr. Sangpour. We are grateful to Mr. R. Bahrampour collaboration in the designing and manufacturing, Mr. S. Noraie for X-ray diffractometery, and Mrs. S. Taieb Taher for the skillful images of AFM and observation of FESEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abouzar Massoudi.

Additional information

Manuscript submitted February 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokrvash, H., Rad, R.Y. & Massoudi, A. An Innovative Electrolysis Approach for the Synthesis of Metal Matrix Bulk Nanocomposites: A Case Study on Copper-Niobium System. Metall Mater Trans A 49, 1355–1362 (2018). https://doi.org/10.1007/s11661-018-4473-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4473-y

Navigation