Skip to main content

Advertisement

Log in

Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries (f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to ~ 40 and ~ 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches ~ 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  Google Scholar 

  2. Y. Huang and P.B. Prangnell: Acta Mater., 2008, vol. 56, pp. 1619–32.

    Article  Google Scholar 

  3. X.C. Liu, H.W. Zhang, and K. Lu: Science, 2013, vol. 342, pp. 337–40.

    Article  Google Scholar 

  4. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin: Acta Mater., 2010, vol. 58, pp. 5262–73.

    Article  Google Scholar 

  5. H.W. Zhang, X. Huang, R. Pippan, and N. Hansen: Acta Mater., 2010, vol. 58, pp. 1698–1707.

    Article  Google Scholar 

  6. X.C. Liu, H.W. Zhang, and K. Lu: Acta Mater., 2015, vol. 96, pp. 24–36.

    Article  Google Scholar 

  7. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier: Ann. Rev. Mater. Res., 2010, vol. 40, pp. 319–43.

    Article  Google Scholar 

  8. A.P. Zhilyaev, S. Swaminathan, A.I. Pshenichnyuk, T.G. Langdon, and T.R. McNelley: J. Mater. Sci., 2013, vol. 48, pp. 4626–36.

    Article  Google Scholar 

  9. F. Liu, H. Yuan, J. Yin, and J.T. Wang: Mater. Sci. Eng., A, 2016, vol. 662, pp. 578–87.

    Article  Google Scholar 

  10. F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–19.

    Article  Google Scholar 

  11. O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan: Acta Mater., 2014, vol. 77, pp. 401–10.

    Article  Google Scholar 

  12. T. Yu, N. Hansen, X. Huang, and A. Godfrey: Mater. Res. Lett., 2014, vol. 2, pp. 160–65.

    Article  Google Scholar 

  13. Y.S. Li, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 230–41.

    Article  Google Scholar 

  14. E.V. Naidenkin, K.V. Ivanov, and E.V. Golosov: Russ. Metall., 2014, vol. 2014, pp. 303–07.

    Article  Google Scholar 

  15. K. Edalati, J.M. Cubero-Sesin, A. Alhamidi, I.F. Mohamed, and Z. Horita: Mater. Sci. Eng., A, 2014, vol. 613, pp. 103–10.

    Article  Google Scholar 

  16. T.R. Lee, C.P. Chang, and P.W. Kao: Mater. Sci. Eng., A, 2005, vol. 408, pp. 131–35.

    Article  Google Scholar 

  17. G.B. Rathmayr and R. Pippan: Acta Mater., 2011, vol. 59, pp. 7228–40.

    Article  Google Scholar 

  18. N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, G.I. Raab, and R.Z. Valiev: Mater. Sci. Eng., A, 2012, vol. 554, pp. 105–15.

    Article  Google Scholar 

  19. A.P. Zhilyaev, B.K. Kim, J.A. Szpunar, M.D. Bar, and T.G. Langdon: Mater. Sci. Eng., A, 2005, vol. 391, pp. 377–89.

    Article  Google Scholar 

  20. S. Hazra, A. Gazder, A. Carman, and E. Pereloma: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1334–48.

    Article  Google Scholar 

  21. G.P. Dinda, H. Rösner, and G. Wilde: Scripta Mater., 2005, vol. 52, pp. 577–82.

    Article  Google Scholar 

  22. D.A. Hughes and N. Hansen: Phys. Rev. Lett., 2014, vol. 112, p. 135504.

    Article  Google Scholar 

  23. K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu: Acta Mater., 2006, vol. 54, pp. 5281–91.

    Article  Google Scholar 

  24. X.C. Liu, H.W. Zhang, and K. Lu: Scripta Mater., 2015, vol. 95, pp. 54–57.

    Article  Google Scholar 

  25. Y.B. Zhang, O.V. Mishin, N. Kamikawa, A. Godfrey, W. Liu, and Q. Liu: Mater. Sci. Eng., A, 2013, vol. 576, pp. 160–66.

    Article  Google Scholar 

  26. J.Q. Duan, M.Z. Quadir, and M. Ferry: Metall. Mater. Trans. A, 2015, vol. 47A, pp. 471–78.

    Google Scholar 

  27. T. Nizolek, N.A. Mara, I.J. Beyerlein, J.T. Avallone, J.E. Scott, and T.M. Pollock: Metallogr. Microstr. Analy., 2014, vol. 3, pp. 470–76.

    Article  Google Scholar 

  28. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock: JOM, 2012, vol. 64, pp. 1192–1207.

    Article  Google Scholar 

  29. Y.F. Sun, N. Tsuji, H. Fujii, and F.S. Li: J. Alloys Compd., 2010, vol. 504, pp. S443–S447.

    Article  Google Scholar 

  30. R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  Google Scholar 

  31. S. Li, X. Li, and L. Yang: Acta Mater., 2013, vol. 61, pp. 4398–4413.

    Article  Google Scholar 

  32. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.

    Article  Google Scholar 

  33. P.B. Prangnell, J.R. Bowen, and P.J. Apps: Mater. Sci. Eng., A, 2004, vols. 375–377, pp. 178–85.

    Article  Google Scholar 

  34. L. Dupuy and E.F. Rauch: Mater. Sci. Eng., A, 2002, vol. 337, pp. 241–47.

    Article  Google Scholar 

  35. F. Liu, Y. Liu, and J.T. Wang: Mater. Sci. Forum, 2016, vol. 850, pp. 419–25.

    Article  Google Scholar 

  36. R.R. Keller and R.H. Geiss: J. Microsc., 2012, vol. 245, pp. 245–51.

    Article  Google Scholar 

  37. P.W. Trimby, Y. Cao, Z. Chen, S. Han, K.J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J.T. Wang, J. Wheeler, and J.M. Cairney: Acta Mater., 2014, vol. 62, pp. 69–80.

    Article  Google Scholar 

  38. K.S. Raju, M.G. Krishna, K.A. Padmanabhan, K. Muraleedharan, N.P. Gurao, and G. Wilde: Mater. Sci. Eng., A, 2008, vol. 491, pp. 1–7.

    Article  Google Scholar 

  39. Y.T. Zhu and T.C. Lowe: Mater. Sci. Eng., A, 2000, vol. 291, pp. 46–53.

    Article  Google Scholar 

  40. S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29.

    Article  Google Scholar 

  41. S. Li, I.J. Beyerlein, D.J. Alexander, and S.C. Vogel: Acta Mater., 2005, vol. 53, pp. 2111–25.

    Article  Google Scholar 

  42. T. Yu, D.A. Hughes, N. Hansen, and X. Huang: Acta Mater., 2015, vol. 86, pp. 269–78.

    Article  Google Scholar 

  43. J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2863–82.

    Article  Google Scholar 

  44. N. Krasilnikov, W. Lojkowski, M. Cabibbo, and R. Valiev: Mater. Sci. Eng., A, 2005, vol. 397, pp. 330–37.

    Article  Google Scholar 

  45. H.W. Zhang, X. Huang, and N. Hansen: Acta Mater., 2008, vol. 56, pp. 5451–65.

    Article  Google Scholar 

  46. W. Wang, F. Yuan, and X. Wu: Comput. Mater. Sci., 2015, vol. 110, pp. 83–90.

    Article  Google Scholar 

  47. H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–50.

    Article  Google Scholar 

  48. D. Prokoshkina, V.A. Esin, G. Wilde, and S.V. Divinski: Acta Mater., 2013, vol. 61, pp. 5188–97.

    Article  Google Scholar 

  49. S.V. Divinski, G. Reglitz, and G. Wilde: Acta Mater., 2010, vol. 58, pp. 386–95.

    Article  Google Scholar 

  50. O.V. Mishin, A. Godfrey, D. Juul Jensen, and N. Hansen: Acta Mater., 2013, vol. 61, pp. 5354–64.

    Article  Google Scholar 

  51. K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita: Acta Mater., 2014, vol. 69, pp. 68–77.

    Article  Google Scholar 

  52. C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones: J. Mater. Sci., 2008, vol. 43, pp. 7264–72.

    Article  Google Scholar 

  53. V.V. Popov, E.N. Popova, V.P. Pilyugin, D.D. Kuznetsov, and A.V. Stolbovsky: IOP Conf. Ser.: Mater. Sci. Eng., 2014, vol. 63, p. 012096.

    Article  Google Scholar 

  54. M.A. Meyers, A. Mishra, and D.J. Benson: Progr. Mater. Sci., 2006, vol. 51, pp. 427–556.

    Article  Google Scholar 

  55. P.J. Apps, J.R. Bowen, and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 2811–22.

    Article  Google Scholar 

  56. J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, and J.T. Wang: Acta Mater., 2014, vol. 79, pp. 47–58.

    Article  Google Scholar 

  57. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, and S.X. Li: Acta Mater., 2006, vol. 54, pp. 655–65.

    Article  Google Scholar 

  58. K. Xia and J. Wang: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2639–47.

    Article  Google Scholar 

  59. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng., A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  60. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, United Kingdom, 2004.

    Google Scholar 

  61. Y. Ateba Betanda, A.-L. Helbert, F. Brisset, M.-H. Mathon, T. Waeckerlé, and T. Baudin: Mater. Sci. Eng., A, 2014, vol. 614, pp. 193–98.

    Article  Google Scholar 

  62. W.T. Read and W. Shockly: Phys. Rev. A, 1950, vol. 78, pp. 275–89.

    Article  Google Scholar 

  63. T. Knudsen, W.Q. Cao, A. Godfrey, Q. Liu, and N. Hansen: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 430–40.

    Article  Google Scholar 

  64. R.A. Vandermeer and N. Hansen: Acta Mater., 2008, vol. 56, pp. 5719–27.

    Article  Google Scholar 

  65. W.Q. Cao, A. Godfrey, W. Liu, and Q. Liu: Mater. Lett., 2003, vol. 57, pp. 3767–74.

    Article  Google Scholar 

  66. G.H. Zahid, Y. Huang, and P.B. Prangnell: Acta Mater., 2009, vol. 57, pp. 3509–21.

    Article  Google Scholar 

  67. D. Terada, H. Houda, and N. Tsuji: J. Mater. Sci., 2008, vol. 43, pp. 7331–37.

    Article  Google Scholar 

  68. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2012, vol. 60, pp. 4370–78.

    Article  Google Scholar 

  69. Y. Huang and F.J. Humphreys: Acta Mater., 2000, vol. 48, pp. 2017–30.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Ministry of Science and Technology of China under Grant No. 2012CB932203 of the National Key Basic Research Program, the Natural Science Foundation of China under Grant Nos. 51520105001 and 51304123, and the Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tao Wang.

Additional information

Manuscript submitted June 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Yuan, H., Goel, S. et al. Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability. Metall Mater Trans A 49, 576–594 (2018). https://doi.org/10.1007/s11661-017-4394-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4394-1

Navigation