Skip to main content
Log in

Effect of Coiling Temperature on Microstructure and Tensile Behavior of a Hot-Rolled Ferritic Lightweight Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of coiling temperature (CT) ranging from 673 K to 973 K (400 °C to 700 °C) on microstructure and tensile property of a hot-rolled ferritic lightweight steel containing 0.35 wt pct C and 4.1 wt pct Al are investigated in the present study. Basically, the microstructure of the hot-rolled steel is composed of δ-ferrite grain bands and secondary phase bands which are originated from the decomposition of antecedent austenite. The secondary phase band is a bainite band at coiling temperatures (CTs) lower than 723 K (450 °C). More specifically, the bainite band mainly consists of lower bainite together with blocky retained austenite at the CT of 673 K (400 °C), while it primarily contains carbide-free bainite being an aggregate of lath-shaped ferrite and austenite at the CT of 723 K (450 °C). The secondary phase band is a carbide band which mainly contains a pearlite structure at CTs higher than 773 K (500 °C). There are three types of carbides in the steel matrix: transitional ɛ-carbide present inside lower bainite, cementite present within carbide bands as well as at the boundaries between carbide bands and δ-ferrite bands, and κ-carbide present at δ-ferrite grain boundaries which is clearly seen at CTs higher than 773 K (500 °C). The volume fraction of retained austenite reaches the peak value of 9.6 pct at the CT of 723 K (450 °C), and abruptly drops to zero when the CTs are higher than 773 K (500 °C). Lath-shaped retained austenite with a higher volume fraction induces significant enhancement of elongation through the TRIP effect, leading to a uniform elongation of 25 pct and an elongation-to-failure of 32 pct at the CT of 723 K (450 °C). Crack initiation and propagation inside the tested specimens are tracked and fracture surface is observed to help understand the deformation and fracture behavior of the hot-rolled steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh and S.-J. Kim: Metall. Mater. Trans. A, 2009, vol. 41, pp. 397-408.

    Google Scholar 

  2. [2] S. Han, S. Shin, H.-J. Lee, B.-J. Lee, S. Lee, N. Kim and J.-H. Kwak: Metall. Mater. Trans. A, 2012, vol. 43, pp. 843-53.

    Article  Google Scholar 

  3. [3] C.-H. Seo, K.H. Kwon, K. Choi, K.-H. Kim, J.H. Kwak, S. Lee and N.J. Kim: Scripta Mater., 2012, vol. 66, pp. 519-22.

    Article  Google Scholar 

  4. [4] S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh and H.N. Han: Scripta Mater., 2013, vol. 68, pp. 365-69.

    Article  Google Scholar 

  5. [5] S.S. Sohn, B.J. Lee, S. Lee, N.J. Kim and J.H. Kwak: Acta Mater., 2013, vol. 61, pp. 5050–66.

    Article  Google Scholar 

  6. [6] S. Chatterjee, M. Murugananth and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 819-27.

    Article  Google Scholar 

  7. [7] H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu and G.D. Wang: Scripta Mater., 2013, vol. 68, pp. 370-74.

    Article  Google Scholar 

  8. [8] S.S. Sohn, K. Choi, J.-H. Kwak, N.J. Kim and S. Lee: Acta Mater., 2014, vol. 78, pp. 181-89.

    Article  Google Scholar 

  9. G. Frommeyer, E. Drewes and B. Engl: La Revue de Métallurgie-CIT, 2000, pp. 1245–53.

  10. [10] S. Pramanik and S. Suwas: JOM, 2014, vol. 66, pp. 1868-76.

    Article  Google Scholar 

  11. [11] H.L. Yi, K.Y. Lee and H.K.D.H. Bhadeshia: Mater. Sci. Eng., A, 2011, vol. 528, pp. 5900-03.

    Article  Google Scholar 

  12. [12] Z.H. Cai, H. Ding, R.D.K. Misra and H. Kong: Scripta Mater., 2014, vol. 71, pp. 5-8.

    Article  Google Scholar 

  13. [13] S.-J. Park, Y.-U. Heo, Y. Choi, K. Lee, H. Han and D.-W. Suh: JOM, 2014, vol. 66, pp. 1837-44.

    Article  Google Scholar 

  14. [14] Z.H. Cai, H. Ding, R.D.K. Misra, H. Kong and H.Y. Wu: Mater. Sci. Eng., A, 2014, vol. 595, pp. 86-91.

    Article  Google Scholar 

  15. [15] H.L. Yi, K.Y. Lee and H.K.D.H. Bhadeshia: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, vol. 467, pp. 234-43.

    Article  Google Scholar 

  16. [16] S.S. Sohn, S. Lee, B.J. Lee and J.H. Kwak: JOM, 2014, vol. 66, pp. 1857-67.

    Article  Google Scholar 

  17. [17] H.L. Yi, K.Y. Lee and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2011, vol. 27, pp. 525-29.

    Article  Google Scholar 

  18. [18] Y.J. Choi, D.W. Suh and H.K.D.H. Bhadeshia: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, vol. 468, pp. 2904-14.

    Article  Google Scholar 

  19. [19] S. Shin, H. Lee, S. Han, C.-H. Seo, K. Choi, S. Lee, N. Kim, J.-H. Kwak and K.-G. Chin: Metall. Mater. Trans. A, 2010, vol. 41, pp. 138-48.

    Article  Google Scholar 

  20. [20] S.S. Sohn, B.-J. Lee, J.-H. Kwak and S. Lee: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3844-56.

    Article  Google Scholar 

  21. [21] S. Han, S. Shin, S. Lee, N. Kim, J.-H. Kwak and K.-G. Chin: Metall. Mater. Trans. A, 2011, vol. 42, pp. 138-46.

    Article  Google Scholar 

  22. [22] J. Jeong, C.-Y. Lee, I.-J. Park and Y.-K. Lee: J. Alloys Compd., 2013, vol. 574, pp. 299-304.

    Article  Google Scholar 

  23. [23] H.-J. Lee, S.S. Sohn, S. Lee, J.-H. Kwak and B.-J. Lee: Scripta Mater., 2013, vol. 68, pp. 339-42.

    Article  Google Scholar 

  24. [24] S.S. Sohn, B.J. Lee, S. Lee and J.H. Kwak: Acta Mater., 2013, vol. 61, pp. 5626-35.

    Article  Google Scholar 

  25. [25] W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564-83.

    Article  Google Scholar 

  26. [26] H. Wang, Z. Huang, Z. Lu, Q. Wang and J. Jiang: J. Alloys Compd., 2016, vol. 682, pp. 35-41.

    Article  Google Scholar 

  27. [27] E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden and J. Van Humbeeck: Scripta Mater., 2001, vol. 44, pp. 885-92.

    Article  Google Scholar 

  28. [28] H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21, pp. 767-97.

    Article  Google Scholar 

  29. [29] B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285-303.

    Article  Google Scholar 

  30. [30] X.D. Wang, B.X. Huang, L. Wang and Y.H. Rong: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1-7.

    Article  Google Scholar 

  31. [31] H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28, pp. 1265-73.

    Article  Google Scholar 

  32. [32] H.K.D.H. Bhadeshia, Bainite in Steels Transformations, Microstructure and Properties, 2 ed., Institute of Materials, Minerals and Mining, London, 2001.

    Google Scholar 

  33. [33] G.M. Michal and J.A. Slane: Metall. Trans. A, 1986, vol. 17, pp. 1287-94.

    Article  Google Scholar 

  34. A.S. Keh and W.C. Leslie: in Materials Science Research, H.H. Stadelmaier and Austin W.W., eds., Springer US: Boston, MA, 1963, pp 208–50.

  35. [35] X.D. Wang, W.Z. Xu, Z.H. Guo, L. Wang and Y.H. Rong: Mater. Sci. Eng., A, 2010, vol. 527, pp. 3373-78.

    Article  Google Scholar 

  36. [36] S.S. Nayak, R. Anumolu, R.D.K. Misra, K.H. Kim and D.L. Lee: Mater. Sci. Eng., A, 2008, vol. 498, pp. 442-56.

    Article  Google Scholar 

  37. [37] S.Z. Bokshtein, M.A. Gubareva, I.E. Kontorovich and L.M. Moroz: Metal Science and Heat Treatment of Metals, 1961, vol. 3, pp. 6-9.

    Article  Google Scholar 

  38. [38] H.L. Yi, P. Chen and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3512-18.

    Article  Google Scholar 

  39. [39] H. Matsuda, H. Noro, Y. Nagataki and Y. Hosoya: Mater. Sci. Forum, 2010, vol. 638-642, pp. 3374-79.

    Article  Google Scholar 

  40. [40] Y.-R. Im, B.-J. Lee, Y.J. Oh, J.H. Hong and H.-C. Lee: J. Nucl. Mater., 2004, vol. 324, pp. 33-40.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Jingjing Wang, School of Materials Science and Engineering of Shanghai University for her help with the thermodynamic calculation, and Ms. Rui Huang and Dr. Junliang Liu, Baosteel Iron & Steel Co., Ltd, for their help with the TEM microstructural analyses. This work is financially supported by the National Nature Science Foundation of China (Grant No. 51271112) and the Research Funds from Baosteel Iron & Steel Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Yang or Li Wang.

Additional information

Manuscript submitted April 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, Q., Wang, X. et al. Effect of Coiling Temperature on Microstructure and Tensile Behavior of a Hot-Rolled Ferritic Lightweight Steel. Metall Mater Trans A 47, 5918–5931 (2016). https://doi.org/10.1007/s11661-016-3752-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3752-8

Keywords

Navigation